

CMS32H3201 数据手册

基于 ARM® Cortex®-M0+的超低功耗 32 位微控制器

内置 256K 字节 Flash,丰富的模拟功能,定时器及各种通讯接口

Rev 1.13

请注意以下有关CMS知识产权政策

*中微半导体(深圳)股份有限公司(以下简称本公司)已申请了专利,享有绝对的合法权益。与本公司MCU或其他产品有关的专利权并未被同意授权使用,任何经由不当手段侵害本公司专利权的公司、组织或个人,本公司将采取一切可能的法律行动,遏止侵权者不当的侵权行为,并追讨本公司因侵权行为所受的损失、或侵权者所得的不法利益。

*中微半导体(深圳)股份有限公司的名称和标识都是本公司的注册商标。

*本公司保留对规格书中产品在可靠性、功能和设计方面的改进作进一步说明的权利。然而本公司对于规格内容的使用不负责任。文中提到的应用其目的仅仅是用来做说明,本公司不保证和不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。本公司的产品不授权适用于救生、维生器件或系统中作为关键器件。本公司拥有不事先通知而修改产品的权利,对于最新的信息,请参考官方网站 www.mcu.com.cn。

1 产品特性

1.1 功能特性

● 超低功耗工作环境:

- ▶ 电源电压范围: 1.8V到4.4V
- ▶ 温度范围: -40°C到85°C
- ▶ 低功耗模式:睡眠模式,深度睡眠模式
- ➤ 运行功耗: 120uA/MHz@64MHz
- ➤ 深度睡眠模式下功耗: 0.7uA
- ➤ 深度睡眠模式+32.768K+RTC工作: 1.2uA

● 内核:

- > ARM®32-bitCortex®-M0+ CPU
- ▶ 工作频率: 32KHz~64MHz

● 存储器:

- ▶ 256KB Flash存储器,程序与数据存储共享
- ▶ 2.5KB专用数据Flash存储器
- ▶ 32KB SRAM存储器,附带奇偶校验
- ▶ 支持Remap功能,可以选择从Boot区域,Code Flash区域,RAM区域或QSPI启动

● 电源和复位管理:

- ▶ 内置上电复位(POR)电路
- ▶ 内置电压检测(LVD)电路(门限电压可设)

● 时钟管理:

- ▶ 内置高速发振器,精度(±1%)。可提供1MHz~ 64MHz系统时钟及外围模块动作时钟
- ▶ 内置15KHz低速振荡器
- ▶ 内置2路PLL
- ▶ 支持1MHz~20MHz外部晶体振荡器
- ▶ 支持32.768KHz外部晶体振荡器

● 乘法器/除法器模块:

- ▶ 乘法器:支持单周期32bit乘法运算
- ▶ 除法器:支持32bit有符号整数除法运算,仅需8个 CPU时钟周期完成一次运算

● 增强型DMA控制器:

- ▶ 中断触发启动。
- 传送模式可选(正常传送模式,重复传送模式,块传送模式以及链传送模式)
- ▶ 传送源/目的领域为全地址空间范围可选

● 联动控制器:

- ▶ 能将事件信号链接到一起,实现外围功能的联动。
- ▶ 事件输入15种,事件触发4种。

● 串行两线调试器 (SWD)

● 丰富的定时器:

- ▶ 16位定时器: 12通道
- ▶ 15位间隔定时器: 1个
- ➢ 实时时钟(RTC): 1个(具有万年历、闹钟功能,并且支持大范围的时钟校正)
- ▶ 看门狗定时器(WWDT): 1个
- ➢ SysTick定时器

● 24位Sigma-Delta ADC

- ▶ 内置LDO
- ▶ 支持单路差分输入
- ▶ 内置振荡器
- ▶ 集成温度传感器
- ▶ 带休眠功能
- ▶ 2线SPI接口,最快速率为1.1MHz
- ➤ ADC 功能特性:
 - 24位无失码;
 - PGA 放大倍数可选: 1、2、4、8、16、32、64、128 、256:
 - 输出速率(ODR)可选: 2.5Hz-2.56KHz;
 - PGA=128、ODR=10Hz、SET_LDO=00时,有效分辨 率为20.6位;
 - PGA=128、ODR=10Hz、SET_LDO=00时,等效输入 噪声30nVrms。

● 丰富灵活的接口:

- ▶ 3通道串行通讯单元:每通道可以自由配置成1通道标准 UART、2通道SPI或2通道简易I2C
- ➤ 标准SPI: 2通道(支持8bit和16bit)
- ▶ 标准I2C: 2通道
- ▶ I2S: 1通道
- ▶ QSPI: 1通道, 支持数据加密
- ▶ LCD BUS接口: 支持8080, 6800接口

● USB接口:

- ▶ 兼容USB 2.0规范
- ▶ 可作为主机控制器或设备控制器
- ▶ 支持USB 2.0全速和低速传输
- ▶ 支持同步传输,控制传输,批量传输和中断传输。
- ➤ 兼容USB BC1.2规范
- ➤ On-The-Go (OTG) 功能

● 丰富的模拟外围:

- 12位精度ADC转换器,转换速率1.42Msps,外部模拟通道数28个,内部可选PGA0输出作为转换通道,带温度传感器,支持单通道转换模式和多通道扫描转换模式。转换范围:0到正参考电压
- ▶ 比较器(CMP),内置两通道带迟滞比较器,输入源可选,基准电压可选择外部基准电压或内部基准电压
- ➢ 可编程增益放大器(PGA),内置一通道PGA,可设置1/2/4/8/16/32/64/128倍增益,带外部GND引脚(可用作差分模式),输出带采样保持电路,支持失调电压修调

● 输入/输出端口:

- ▶ I/O端口: 52个
- ▶ 能进行N沟道漏极开路、内部上下拉的切换
- ▶ 内置按键中断检出功能
- ▶ 内置时钟输出/蜂鸣器输出的控制电路

● 安全功能:

- ➤ 符合IEC/UL 60730相关标准
- ▶ 异常存储空间访问报错
- ▶ 支持RAM奇偶校验
- ▶ 支持硬件CRC校验
- ▶ 支持重要SFR保护,防止误操作
- ▶ 128位唯一ID号
- ▶ debug模式下的Flash二级保护(

level1:只能进行flash全域擦除,不能读写; level2:仿真器连接无效,对flash操作不可)

● 封装:

➤ 64Pin封装形式

产品型号:

产品型号	封装	引脚数
CMS32H3201	64引脚塑封LQFP(7×7mm,0.4mm间距)	64引脚

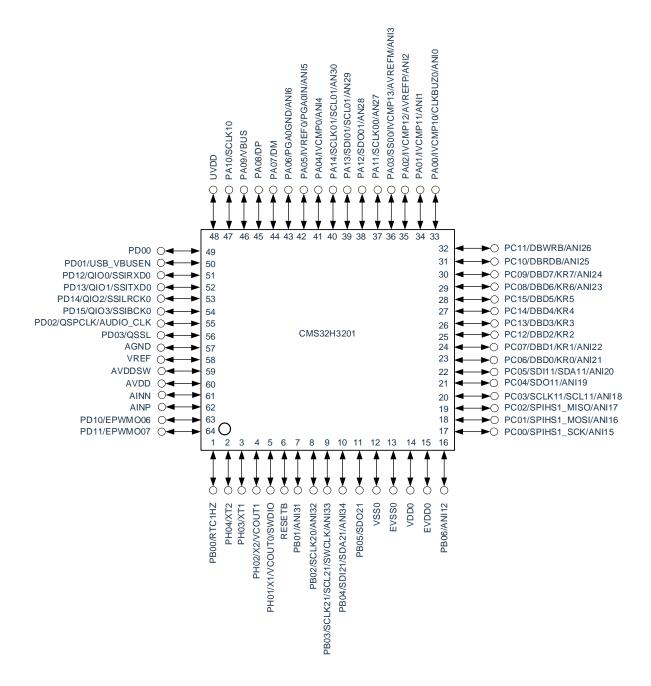
FLASH、SRAM 容量:

Flash 存储器	专用数据 Flash存储器	SRAM
256KB	2.5KB	32KB

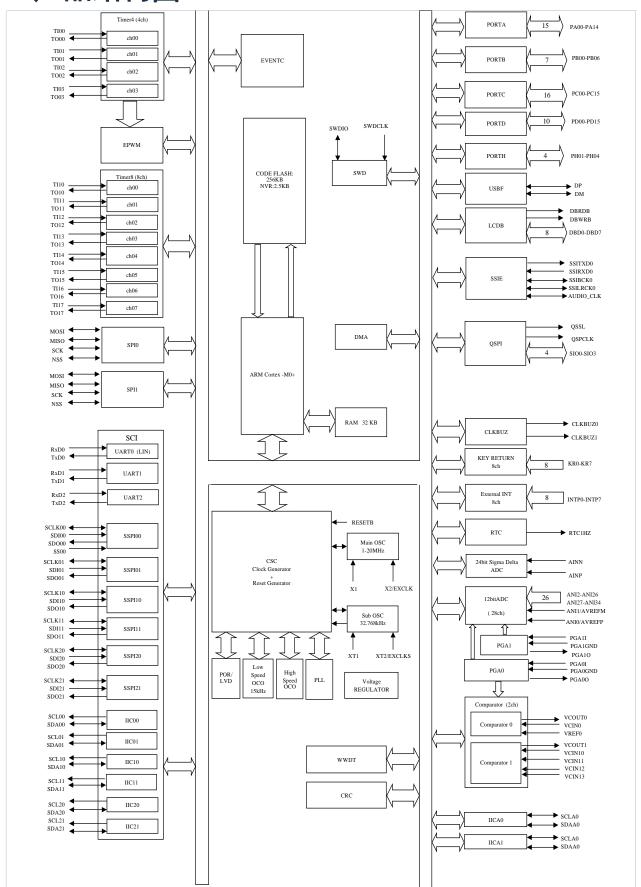
2 系统概述

2.1 系统简介

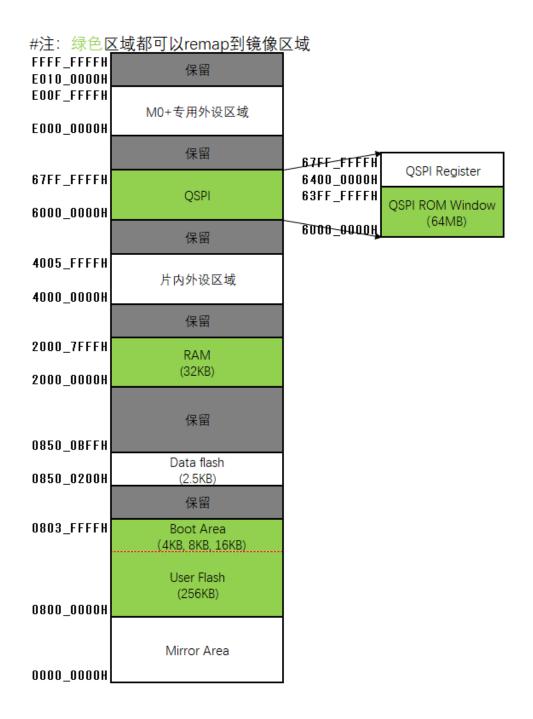
超低功耗CMS32H3201采用高性能的ARM®Cortex®-M0+的32位RISC内核,最高可工作于64兆赫兹频率,采用高速的嵌入式闪存(SRAM最大32KB,程序/数据闪存最大256KB)。本产品集成I2C、SPI、QSPI、UART、LIN、USB、IIS多种标准接口。集成12bitA/D转换器、集成24位Sigma-delta ADC、温度传感器、比较器,可编程增益放大器。其中12bitA/D转换器可以于采集外部传感器信号,降低系统设计成本。芯片内集成的温度传感器则可实现对外部环境温度实时监控。芯片内部集成的比较器,可支持高速和低速两种工作模式,在高速模式下可支持高速运转马达的控制反馈,而在低速模式下则可用于电池监测。集成12通道16bit定时器模块,并搭载EPWM控制电路,结合定时器可实现一个直流电机或者两个步进电机的控制。


CMS32H3201还具有出色的低功耗性能,支持睡眠和深度睡眠两种低功耗模式,设计灵活。其运行功耗为120uA/MHz@64MHz,在深度睡眠模式下功耗仅0.7uA,适合采用电池供电的低功耗设备。同时,由于集成事件联动控制器,可实现硬件模块之间的直接连接,无需CPU的干预,比使用中断响应速度更快,同时降低了CPU的活动频率,延长了电池寿命。

这些特点使得 CMS32H3201 微控制器系列可广泛适用于消费类民用产品,如家用电器、移动设备等。


2.2 管脚描述

2.2.1 CMS32H3201 引脚图



3 产品结构图

4 存储器映射

5 引脚功能

5.1 端口功能

各端口的功能如下表所示。.

端口名	复用功能	数字输出功能设定寄存器 pxxcfg[3:0]	数字输入功能设定寄存器 xxxPCFG[5:0]
RESETB	RESETB	-	-
	GPIO	00H	00H
	ANI0	00H	00H
PA00	VCIN10	00H	00H
	CLKBUZ0	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DAGA	ANI1	00H	00H
PA01	VCIN11	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI2	00H	00H
PA02	AVREFP	00H	00H
	VCIN12	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI3	00H	00H
	AVREFM	00H	00H
PA03	VCIN13	00H	00H
	SS00	00H	00H
	PGA_ADJOUT	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
B404	ANI4	00H	00H
PA04	VCIN0	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI5	00H	00H
PA05	VREF0	00H	00H
	PGA0IN	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DA00	ANI6	00H	00H
PA06	PGA0GND	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PA07	USB_DM	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
PA08	GPIO	00H	00H

端口名	复用功能	数字输出功能设定寄存器 pxxcfg[3:0]	数字输入功能设定寄存器 xxxPCFG[5:0]
	USB_DP	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PA09	USB_VBUS	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PA10	SCLK10	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DA44	ANI27	00H	00H
PA11	SCLK00	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DA40	ANI28	00H	00H
PA12	SDO01	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DA40	ANI29	00H	00H
PA13	SDI01/SDA01	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DA44	ANI30	00H	00H
PA14	SCLK01/SCL01	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PB00	RTC1HZ	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PB01	ANI31	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PB02	ANI32	00H	00H
PB02	SCLK20	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI33	00H	00H
PB03	SCLK21/SCL21	00H	00H
	SWCLK	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DD04	ANI34	00H	00H
PB04	SDI21/SDA21	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PB05	SDO21	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)

端口名	复用功能	数字输出功能设定寄存器 pxxcfg[3:0]	数字输入功能设定寄存器 xxxPCFG[5:0]
	GPIO	00H	00H
PB06	ANI12	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DCOO	ANI15	00H	00H
PC00	SPI1_SCK	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PC01	ANI16	00H	00H
PCUT	SPI1_MOSI	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PC02	ANI17	00H	00H
PC02	SPI1_MISO	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI18	00H	00H
PC03	SPI0_SCK	00H	00H
	SCLK11/SCL11	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI19	00H	00H
PC04	SPI0_MOSI	00H	00H
	SDO11	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI20	00H	00H
PC05	SPI0_MISO	00H	00H
	SDI11/SDA11	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI21	00H	00H
PC06	KR0	00H	00H
	DBD0	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI22	00H	00H
PC07	KR1	00H	00H
	DBD1	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PC08	ANI23	00H	00H
	KR6	00H	00H
	DBD6	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
PC09	GPIO	00H	00H

端口名	复用功能	数字输出功能设定寄存器 pxxcfg[3:0]	数字输入功能设定寄存器 xxxPCFG[5:0]
	ANI24	00H	00H
	KR7	00H	00H
	DBD7	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
50.0	ANI25	00H	00H
PC10	DBRDB	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	ANI26	00H	00H
PC11	DBWRB	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	DBD2	00H	00H
PC12	KR2	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	DBD3	00H	00H
PC13	KR3	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	DBD4	00H	00H
PC14	KR4	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	DBD5	00H	00H
PC15	KR5	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PD00	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PD01	USB_VBUSEN	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	QSPCLK	00H	00H
PD02	SSIMCLK	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PD03	QSSL	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
AGND	AGND	-	-
VREF	基准输入,应不高于 AVDDSW 口电压	-	-
AVDDSW	内部 LDO 输出,外接 1uF 以上电容	-	-
AVDD	电源	-	-
AINN	通道负输入	-	-

端口名	复用功能	数字输出功能设定寄存器 pxxcfg[3:0]	数字输入功能设定寄存器 xxxPCFG[5:0]
AINP	通道正输入	-	-
	GPIO	00H	00H
PD10	EPWMO06	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PD11	EPWMO07	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	QIO0	00H	00H
PD12	SSIRXD0	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	QIO1	00H	00H
PD13	SSITXD0	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
55.44	QIO2	00H	00H
PD14	SSIRCK0/SSIFS	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	QIO3	00H	00H
PD15	SSIBCK0	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	X1	00H	00H
PH01	VCOUT0	00H	00H
	SWDIO	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
	X2	00H	00H
PH02	EXCLK	00H	00H
	VCOUT1	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
PH03	XT1	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
	GPIO	00H	00H
DH04	XT2	00H	00H
PH04	EXCLKS	00H	00H
	可配置数字功能	X(见数字功能配置一览表)	X(见数字功能配置一览表)
VDD	电源	-	-
VSS	地	-	-
UVDD	电源	-	-
UVBUS	电源	-	-
	SCLK,AD 的时钟脚		
PD8	(内部 AD 引脚,不需要外部	00H	00H
	连接)		

端口名	复用功能	数字输出功能设定寄存器 pxxcfg[3:0]	数字输入功能设定寄存器 xxxPCFG[5:0]
PD9	DRDYB/DOUT, AD 的数据 脚(内部 AD 引脚,不需要外	00H	00H
	部连接)		

本产品的数字功能配置是将 52 个端口分为 GRP0, GRP1, GRP2 三组, 在组内任意重定向部分复用功能。端口分组和数字功能配置如下所示。

GRP0中的17个端口除了默认的复用功能外,还可以任意重定向通用定时器Timer4的通道0~通道3,串行接口UART0和串行接口IICA0的复用功能。

GRP1中的20个端口除了默认的复用功能外,还可以任意重定向通用定时器Timer8的通道0~通道3,串行接口UART1和高速SPI串口SPIHS0的复用功能。

GRP2中的15个端口除了默认的复用功能外,还可以任意重定向通用定时器Timer8的通道4~通道7,串行接口UART2,串行接口IICA1和蜂鸣器输出CLKBUZ1的复用功能。

端口分组

序号	GRP0	GRP1	GRP2
0	PB00	PC03	PB01
1	PH04	PC04	PB02
2	PH03	PC05	PB03
3	PH02	PC06	PB04
4	PH01	PC07	PB05
5	PC14	PC12	PB06
6	PC15	PC13	-
7	PC08	PA04	-
8	PC09	PA05	PC00
9	PC10	PA06	PC01
10	PC11	PA07	PC02
11	PA00	PA08	PA11
12	PA01	PA09	PA12
13	PA02	PA10	PA13
14	PA03	PD00	PA14
15	-	PD01	PD02
16	-	PD12	PD03
17	-	PD13	-
18	PD10	PD14	-
19	PD11	PD15	-

数字功能配置一览表(1/2 输出功能配置)

引脚	控制寄存器	寄存器配置	引脚兼用功能
	PB00CFG/PH04CFG/PH03CFG/PH02CFG/	4'h00	GPIO/默认的兼用输出
		4'h01	TO00
	PH01CFG/PC14CFG/PC15CFG/PC08CFG/	4'h02	TO01
GRP0	PC09CFG/PC10CFG/PC11CFG/PA00CFG/	4'h03	TO02
	PA01CFG/PA02CFG/PC03CFG/	4'h04	TO03
	PF10CFG/PD11CFG	4'h05	SDO00/TxD0
		其他	禁止设置
		4'h00	GPIO/默认的兼用输出
		4'h01	TO10
	PC03CFG/PC04CFG/PC05CFG/PC06CFG/PC07CFG/PC12CFG/PC13CFG/PA04CFG/PA05CFG/PA06CFG/PA07CFG/PA08CFG/PA09CFG/PA10CFG/PD00CFG/PD01CF	4'h02	TO11
		4'h03	TO12
GRP1		4'h04	TO13
GRET		4'h05	TxD1/SDO10
	PD12CFG/PD13CFG/PD14CFG/PD15CFG	4'h06	SPIHS0_SCKO
	F D 12 C 1 G / F D 13 C 1 G / F D 13 C 1 G	4'h07	SPIHS0_MO
		4'h08	SPIHS0_SO
		其他	禁止设置
		4'h00	GPIO/默认的兼用输出
	DD04050/DD00050/DD00050/DD04050/	4'h01	TO14
	PB01CFG/PB02CFG/PB03CFG/PB04CFG/	4'h02	TO15
GRP2	PB05CFG/PB06CFG/ PC00CFG/PC01CFG/PC02CFG/PA11CFG/	4'h03	TO16
GRFZ	PA12CFG/PA13CFG/PA14CFG/PD02CFG/	4'h04	TO17
	PA12CFG/PA13CFG/PA14CFG/PD02CFG/ PD03CFG	4'h05	TxD2/SDO20
	1 20001 0	4'h06	CLKBUZ1
		其他	禁止设置

数字功能配置一览表(2/2 输入功能配置)

分组	控制寄存器	寄存器配置	引脚兼用功能
		6'h00	默认的兼用输入
		6'h01	PB00 作为兼用输入
		6'h02	PH04 作为兼用输入
		6'h03	PH03 作为兼用输入
		6'h04	PH02 作为兼用输入
		6'h05	PH01 作为兼用输入
		6'h06	PC14 作为兼用输入
	TICOROFO	6'h07	PC15 作为兼用输入
	TIOOPCFG	6'h08	PC08 作为兼用输入
	TI01PCFG	6'h09	PC09 作为兼用输入
GRP0	TI02PCFG	6'h0a	PC10 作为兼用输入
GRPU	TI33PCFG	6'h0b	PC11 作为兼用输入
	RXD0PCFG(UART) SCLA0PCFG(IICA0)	6'h0c	PA00 作为兼用输入
	SDAA0PCFG(IICA0)	6'h0d	PA01 作为兼用输入
	SDAAOI CI G(IICAT)	6'h0e	PA02 作为兼用输入
		6'h0f	PA03 作为兼用输入
		6'h10	-
		6'h11	-
		6'h12	-
		6'h13	PD10 作为兼用输入
		6'h14	PD11 作为兼用输入
		其他	禁止设置
		6'h00	默认的兼用输入
		6'h01	PC03 作为兼用输入
		6'h02	PC04 作为兼用输入
		6'h03	PC05 作为兼用输入
		6'h04	PC06 作为兼用输入
	THOROTO	6'h05	PC07 作为兼用输入
	TI10PCFG	6'h06	PC12 作为兼用输入
	TI11PCFG	6'h07	PC13 作为兼用输入
	TI12PCFG	6'h08	PA04 作为兼用输入
GRP1	TI13PCFG RXD1PCFG(UART)	6'h09	PA05 作为兼用输入
	SPIHS0_SCKIPCFG(SPI)	6'h0a	PA06 作为兼用输入
	SPIHS0_SCRIPCFG(SPI) SPIHS0_SIPCFG(SPI)	6'h0b	PA07 作为兼用输入
	SPIHS0_SIPCFG(SPI) SPIHS0_MIPCFG(SPI)	6'h0c	PA08 作为兼用输入
	OF 11 100_WIII OF G(OFT)	6'h0d	PA09 作为兼用输入
		6'h0e	PA10 作为兼用输入
		6'h0f	PD00 作为兼用输入
		6'h10	PD01 作为兼用输入
		6'h11	PD12 作为兼用输入
		6'h12	PD13 作为兼用输入

分组	控制寄存器	寄存器配置	引脚兼用功能
		6'h13	PD14 作为兼用输入
		6'h14	PD15 作为兼用输入
		其他	禁止设置
		6'h00	默认的兼用输入
		6'h01	PB01 作为兼用输入
		6'h02	PB02 作为兼用输入
		6'h03	PB03 作为兼用输入
		6'h04	PB04 作为兼用输入
		6'h05	PB05 作为兼用输入
		6'h06	PB06 作为兼用输入
	TI14PCFG	6'h07	-
	TI15PCFG	6'h08	-
	TI16PCFG	6'h09	PC00 作为兼用输入
GRP2	TI17PCFG	6'h0a	PC01 作为兼用输入
GRP2	RXD2PCFG(UART)	6'h0b	PC02 作为兼用输入
	SPIHS1_NSSPCFG(SPI)	6'h0c	PA11 作为兼用输入
	SCLA1PCFG(IICA1)	6'h0d	PA12 作为兼用输入
	SDA1PCFG(IICA1)	6'h0e	PA13 作为兼用输入
		6'h0f	PA14 作为兼用输入
		6'h10	PD02 作为兼用输入
		6'h11	PD03 作为兼用输入
		6'h12	-
		6'h13	-
		6'h14	-
		其他	禁止设置

外部中断引脚功能配置一览表

引脚	控制寄存器	寄存器配置	外部中断端口选择
INTP0	INTP0PCFG	3'h00	PC00
		3'h01	PC01
		3'h02	PC02
		3'h03	PC03
		3'h04	PC04
		3'h05	PC05
		3'h06	PC06
		3'h07	PC07
INTP1	INTP1PCFG	3'h00	PC12
		3'h01	PC13
		3'h02	PC14
		3'h03	PC15
		3'h04	PC08
		3'h05	PC09
		3'h06	PC10
		3'h07	PC11
INTP2	INTP2PCFG	3'h00	PA00
		3'h01	PA01
		3'h02	PA02
		3'h03	PA03
		3'h04	PA11
		3'h05	PA12
		3'h06	PA13
		3'h07	PA14
INTP3	INTP3PCFG	3'h00	PA04
		3'h01	PA05
		3'h02	PA06
		3'h03	PA07
		3'h04	PA08
		3'h05	PA09
		3'h06	PA10
		其他	禁止设置
INTP4	INTP4PCFG	3'h00	PD00
		3'h01	PD01
		3'h02	PD12
		3'h03	PD13
		3'h04	PD14
		3'h05	PD15
		3'h06	PD02
		3'h07	PD03
INTP5	INTP5PCFG	3'h00	-

2h01	-
	-
2b02	
'h03	-
	SCLK(AD 时钟,需要 PD08 相关
'h04	的设置)
	DRDYB/DOUT(AD 数据,需要
'h05	PD09 相关的设置)
'h06	PD10
'h07	PD11
'h00	PB00
'h01	PH04
'h02	PH03
'h03	PH02
'h04	PH01
'h05	PB01
'h06	PB02
其他	禁止设置
'h00	PB03
'h01	PB04
'h02	PB05
'h03	PB06
'h04	-
'h05	-
其他	禁止设置
'h'h'h'h'h'h'h'h'h'h'h'h'h'h	n05 n06 n07 n00 n01 n02 n03 n04 n05 n06 他 n00 n01 n02 n03 n04

5.2 端口复用功能

(1/2)

功能名称	输入/输出	功能
ANIO~ANI34	输入	A/D转换器的模拟输入
		外部中断请求输入
INTP0~INTP7	输入	有效边沿的指定:上升沿、下降沿、上升和下降的双边沿
VCIN0	输入	比较器0的模拟电压输入
VCIN10, VCIN11, VCIN12, VCIN13	输入	比较器1的模拟电压/基准电压输入
VREF0	输入	比较器0的基准电压输入
VCOUT0、VCOUT1	输出	比较器输出
PGA0IN	输入	PGA输入
PGA0_ADJOUT	输出	PGA输出
PGA0GND	输入	PGA参考输入
KR0~KR7	输入	键中断输入
CLKBUZ0、CLKBUZ1	输出	时钟输出/蜂鸣器输出
RTC1HZ	输出	实时时钟的校正时钟(1Hz)输出
DECETO	<i>+</i> Δ \	低电平有效的系统复位输入,当不使用外部复位时,必须直接或者通
RESETB	输入	过电阻连接VDD。
RxD0~RxD2	输入	串行接口UART0、UART1、UART2的串行数据输入
TxD0~TxD2	输出	串行接口UART0、UART1、UART2的串行数据输出
SCL00、SCL01、SCL10、SCL11、 SCL20、SCL21	输出	串行接口IIC00、IIC01、IIC10、IIC11、IIC20、IIC21的串行时钟输出
SDA00、SDA01、SDA10、SDA11、SDA20、SDA21	输入/输出	串行接口IIC00、IIC01、IIC10、IIC11、IIC20、IIC21的串行数据输入 /输出
SCLK00、SCLK01、SCLK10、 SCLK11、SCLK20、SCLK21	输入/输出	串行接口SSPI00、SSPI01、SSPI10、SSPI11、SSPI20、SSPI21的 串行时钟输入/输出
SDI00、SDI01、SDI10、SDI11、 SDI20、SDI21	输入	串行接口SSPI00、SSPI01、SSPI10、SSPI11、SSPI20、SSPI21的 串行数据输入
SS00	输入	串行接口SSPI00的芯片选择输入
SDO00、SDO01、SDO10、SDO11 、SDO20、SDO21	输出	SSPI00、SSPI01、SSPI10、SSPI11、SSPI20、SSPI21的串行数据 输出

(2/2)

		(2/2)
功能名称	输入/ 输出	功能
SPIHS0_NSS	输入	串行接口SPIHS0的芯片选择输入
SPIHS0_SCK	输入/输出	串行接口SPIHS0的串行时钟输入/输出
SPIHS0_MISO	输入/输出	串行接口SPIHS0的串行数据输入/输出
SPIHS0_MOSI	输入/输出	串行接口SPIHS0的串行数据输入/输出
SPIHS1_NSS	输入	串行接口SPIHS1的芯片选择输入
SPIHS1_SCK	输入/输出	串行接口SPIHS1的串行时钟输入/输出
SPIHS1_MISO	输入/输出	串行接口SPIHS1的串行数据输入/输出
SPIHS1_MOSI	输入/输出	串行接口SPIHS1的串行数据输入/输出
SCLA0	输入/输出	串行接口IICA0的时钟输入/输出
SDAA0	输入/输出	串行接口IICA0的串行数据输入/输出
SCLA1	输入/输出	串行接口IICA1的时钟输入/输出
SDAA1	输入/输出	串行接口IICA1的串行数据输入/输出
TI00~TI03	输入	16位定时器Timer4的外部计数时钟/捕捉触发输入
TO00~TO03	输出	16位定时器Timer4的定时器输出
TI10~TI17	输入	16位定时器Timer8的外部计数时钟/捕捉触发输入
TO10~TO17	输出	16位定时器Timer8的定时器输出
USB_VBUSEN	输出	USB输出给外部电源IC的VBUS使能信号
USB_ID	输入	OTG模式时连接到MicroAB连接器的ID输入信号
USB_EXICEN	输出	输出给OTG电源IC的低功耗控制信号
USB_OVRCUA、USB_OVRCUB	输入	过流端口
USB_DP	输入/输出	USB收发器的D+线
USB_DM	输入/输出	USB收发器的D-线
USB_VBUS	输入	USB连接检测端口
UVDD	输入/输出	输入:USB收发器的电源供给,输出:USB LDO的输出端口。
QIO0~QIO3	输入/输出	QSPI数据I/O
QSPCLK	输出	QSPI时钟输出
QSSL	输出	QSPI从属选择
SSIRXD0	输入	串行音频接口SSI的发送数据
SSITXD0	输出	串行音频接口SSI的接收数据
SSILRCK0/SSIFS	输入/输出	串行音频接口SSI的帧时钟/帧同步
SSIBCK0	输入/输出	串行音频接口SSI的bit时钟
SSIMCLK	输入	串行音频接口SSI的主时钟
X1, X2	_	连接用于主系统时钟的谐振器。
EXCLK	输入	主系统时钟的外部时钟输入
XT1、XT2	_	连接用于副系统时钟的谐振器。
EXCLKS	输入	副系统时钟的外部时钟输入
VDD	_	电源
AVREFP	输入	A/D转换器的正(+)基准电压输入
AVREFM	输入	A/D转换器的负(-)基准电压输入
VSS	_	地
L.	1	

功能名称	输入/ 输出	功能
SWDIO	输入/输出	SWD数据接口
SWCLK	输入	SWD时钟接口

备注:作为噪声和锁定的对策,必须在 VDD-VSS 之间以最短的距离并且用较粗的布线连接旁路电容器(0.1uF 左右)。

6 功能概要

6.1 ARM® Cortex®-M0+内核

ARM 的 Cortex-M0(+)处理器是 ARM 处理器中针对嵌入式系统的新一代产品。它提供了一种低成本的平台旨在满足少引脚数和低功耗单片机的需求,同时提供出色的计算性能和先进的系统响应中断。

Cortex-M0(+)处理器的 32 位 RISC 处理器,提供卓越的代码效率,提供 ARM 内核的高性能预期,区别于同等内存大小的 8 位和 16 位器件。Cortex-M0(+)处理器具有 32 根地址线,存储空间多达 4G。

CMS32H3201 采用嵌入式的 ARM 内核, 因此与所有的 ARM 工具和软件兼容。

6.2 存储器

6.2.1 闪存 Flash

CMS32H3201内置了可进行编程、擦除和重写的闪存。具有如下功能:

- ▶ 程序和数据共享 256K 存储空间。
- ➤ 2.5KB专用数据Flash存储器
- ▶ 支持页擦除,每页大小是 512byte,擦除时间 4ms
- ▶ 支持 byte/half-word/word (32bit) 编程,编程时间 24us

6.2.2 **SRAM**

CMS32H3201 内置 32K 字节的嵌入式 SRAM。

6.3 增强型 DMA 控制器

内置增强型 DMA(Direct Memory Access)控制器,能够实现不使用 CPU 而在存储器之间进行数据传送的功能。

- 支持通过外围功能中断启动 DMA. 能实现通过通信、定时器和 A/D 进行的实时控制。
- ▶ 传送源/目的领域为全地址空间范围可选(flash 领域作为目的地址时,需要预设 flash 为编程模式)。
- ▶ 支持4种传送模式(正常传送模式,重复传送模式,块传送模式以及链传送模式)。

6.4 联动控制器

联动控制器将各外围功能输出的事件与外围功能触发源之间相互链接。从而实现不使用 CPU 而直接进行外围功能之间的协作运行。

联动控制器有以下功能:

- 》 能将事件信号链接到一起,实现外围功能的联动。
- ▶ 事件输入 15 种,事件触发 4 种。

6.5 时钟发生和启动

时钟发生电路是产生给CPU和外围硬件提供时钟的电路。有以下4种系统时钟和时钟振荡电路。

6.5.1 主系统时钟

- ➤ X1振荡电路: 能通过给引脚(X1和X2)连接谐振器产生1~20MHz的时钟振荡,并且能通过执行深度睡眠指令或者设定MSTOP使振荡停止。
- ▶ 高速内部振荡器(高速OCO):能通过选项字节选择频率进行振荡。在解除复位后,CPU默认以此高速内部振荡器时钟开始运行。能通过执行深度睡眠指令或者设定HIOSTOP位使振荡停止。能通过高速内部振荡器的频率选择寄存器更改选项字节设定的频率。最高频率为64Mhz,精度±1.0%。
- ▶ 由引脚(X2)输入外部时钟: (1~20MHz),并且能通过执行深度睡眠 指令或者设定MSTOP位将外部 主系统时钟的输入置为无效。

6.5.2 副系统时钟

- ➤ XT1振荡电路:能通过给引脚(XT1和XT2)连接32.768kHz的谐振器产生32.768kHz的时钟振荡,并且能通过设定XTSTOP位使振荡停止。
- ▶ 由引脚(XT2)输入外部时钟: 32.768kHz,并且能通过设定XTSTOP位将外部时钟的输入置为无效。

6.5.3 低速内部振荡器时钟

- ▶ 低速内部振荡器(低速OCO):产生15kHz(TYP.)的时钟振荡。低速内部振荡器时钟可用作CPU时钟。以下外围硬件能通过低速内部振荡器时钟运行:
- ▶ 看门狗定时器(WWDT)
- ➢ 实时时钟(RTC)
- ▶ 15 位间隔定时器

6.5.4 PLL

▶ 内置两路PLL: 一路为系统时钟用, 一路为USB专用。PLL的源时钟可选择外部时钟, 也可选择高速内部振荡器时钟。

6.6 电源管理

6.6.1 供电方式

VDD:外部电源,电压范围 1.8 至 4.4V。

6.6.2 上电复位

上电复位电路(POR)有以下功能。

- ➤ 在接通电源时产生内部复位信号。如果电源电压(VDD)大于检测电压(VPOR),就解除复位。但是, 在达到工作电压范围前,必须通过电压检测电路或者外部复位保持复位状态。
- 》 将电源电压(VDD)和检测电压(VPDR)进行比较,当VDD<VPDR时,产生内部复位信号。但是,在电源下降时,必须在小于工作电压范围前,转移到深度睡眠模式,或者通过电压检测电路或外部复位设定为复位状态。如果要重新开始运行,必须确认电源电压已恢复到工作电压范围内。

6.6.3 电压检测

电压检测电路通过选项字节设定运行模式和检测电压(VLVDH、VLVDL、VLVD)。电压检测(LVD)电路有以下功能:

- ▶ 将电源电压(VDD)和检测电压(VLVDH、VLVDL、VLVD)进行比较,产生内部复位或者中断请求信号。
- ▶ 电源电压的检测电压(VLVDH、VLVDL、VLVD)能通过选项字节选择检测电平。
- ▶ 能在深度睡眠模式中运行。
- 当电源上升时,在达到工作电压范围前,必须通过电压检测电路或者外部复位保持复位状态。当电源下降时,必须在小于工作电压范围前,转移到深度睡眠模式,或者通过电压检测电路或外部复位设定为复位状态。
- 工作电压范围根据用户选项字节的设定而变。

6.7 低功耗模式

CMS32H3201 支持两种低功耗模式以便在功耗低, 启动时间短, 可用的唤醒源之间实现最佳的折衷:

- ▶ 睡眠模式:通过执行睡眠指令进入睡眠模式。睡眠模式是停止 CPU 运行时钟的模式。在设定睡眠模式前,如果高速系统时钟振荡电路、高速内部振荡器或者副系统时钟振荡电路正在振荡,各时钟就继续振荡。虽然此模式无法让工作电流降到深度睡眠模式的程度,但是在想要通过中断请求立即重新开始处理或者想要频繁地进行间歇运行时是一种有效的模式。
- 深度睡眠模式:通过执行深度睡眠指令进入深度睡眠模式。深度睡眠模式是停止高速系统时钟振荡电路和高速内部振荡器的振荡并且停止整个系统的模式。能大幅度地降低芯片的工作电流。因为深度睡眠模式能通过中断请求来解除,所以也能进行间歇运行。但是,在 X1 时钟的情况下,因为在解除深度睡眠模式时需要确保振荡稳定的等待时间,所以如果一定要通过中断请求立即开始处理,就必须选择睡眠模式。

在任何一种模式中,寄存器、标志和数据存储器全部保持设定为待机模式前的内容,并且还保持输入/输出端口的输出锁存器和输出缓冲器的状态。

6.8 复位功能

以下7种方法产生复位信号。

- 1) 通过RESETB引脚输入外部复位。
- 2) 通过看门狗定时器的程序失控检测产生内部复位。
- 3) 通过上电复位(POR)电路的电源电压和检测电压的比较产生内部复位。
- 4) 通过电压检测电路(LVD)的电源电压和检测电压的比较产生内部复位。
- 5) 因RAM奇偶校验错误而产生内部复位。
- 6) 因存取非法存储器而产生内部复位。
- 7) 软件复位

内部复位和外部复位相同,在产生复位信号后,从写在地址0000H和0001H中的地址开始执行程序。

6.9 中断功能

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多32个中断请求(IRQ)输入,以及1个不可屏蔽中断(NMI)输入,另外,处理器还支持多个内部异常。

本产品对32个可屏蔽中断请求(IRQ)和1个不可屏蔽中断(NMI)进行了处理,详见用户使用手册对应章节。中断源的实际个数因产品而不同。

6.10 实时时钟(RTC)

实时时钟(RTC)有以下功能。

- ▶ 具有年、月、星期、日、小时、分钟和秒的计数器。
- ▶ 固定周期中断功能(周期: 0.5秒、1秒、1分钟、1小时、1日、1个月)
- ▶ 闹钟中断功能(闹钟:星期、小时、分钟)
- ▶ 1Hz的引脚输出功能
- ▶ 支持副系统时钟或者主系统时钟的分频作为RTC的运行时钟
- > 实时时钟中断信号(INTRTC)能用作深度睡眠模式的唤醒
- 支持大范围的时钟校正功能

只有在选择副系统时钟(32.768kHz)或者主系统时钟的分频作为 RTC 的运行时钟的情况下,才能进行年、月、星期、日、小时、分钟和秒的计数。当选择低速内部振荡器时钟(15kHz)时,只能使用固定周期中断功能。

6.11 看门狗定时器

1 通道 WWDT, 17bit 看门狗定时器通过选项字节设定计数运行。看门狗定时器以低速内部振荡器时钟 (15kHz)运行。看门狗定时器用于检测程序失控。在检测到程序失控时,产生内部复位信号。

下述情况判断为程序失控:

- > 当看门狗定时器计数器发生上溢时
- ▶ 当对看门狗定时器的允许寄存器(WDTE)执行1位操作指令时
- ▶ 当给WDTE寄存器写"ACH"以外的数据时
- 在窗口关闭期间给WDTE寄存器写数据时

6.12 SysTick 定时器

这个定时器是实时操作系统专用的,但也可以作为一个标准的递减计数器使用。 它的特点为: 24 位递减计数器自装填能力计数器达到 0 时,有可屏蔽的系统中断的产生。

6.13 定时器 Timer4/Timer8

本产品内置1个含有4通道16位定时器的定时器单元Timer4和1个含有8通道16位定制其的定时器单元Timer8。每个16位定时器称为一"通道",既能分别用作独立的定时器,也能组合多个通道用作高级的定时器功能。

有关各功能的详细内容, 请参照下表。

	1171 376617 34171 37 37 37 37 37 37 37 37 37 37 37 37 37			
	独立通道运行功能		多通道联动运行功能	
•	间隔定时器	•	单触发脉冲输出	
•	方波输出	•	PWM 输出	
•	外部事件计数器	•	多重 PWM 输出	
•	分频器			
•	输入脉冲间隔的测量			
•	输入信号的高/低电平宽度的测量			
•	延迟计数器			

6.13.1 独立通道运行功能

独立通道运行功能是能不受其他通道运行模式的影响而独立使用任意通道的功能。独立通道运行功能能用作以下模式:

- 1) 间隔定时器:能用作以固定间隔产生中断(INTTM)的基准定时器。
- 2) 方波输出:每当产生INTTM中断时,就触发翻转,从定时器输出引脚(TO)输出50%占空比的方波。
- 3) 外部事件计数器:对定时器输入引脚(TI)的输入信号的有效边沿进行计数,如果达到规定次数,就能用作产生中断的事件计数器。
- 4) 分频器功能(只限于单元0的通道0):对定时器输入引脚(TI00)的输入时钟进行分频,然后从输出引脚(TO00)输出。
- 5) 输入脉冲间隔的测量:在定时器输入引脚(TI)的输入脉冲信号的有效边沿开始计数并且在下一个脉冲的有效边沿捕捉计数值,从而测量输入脉冲的间隔。
- 6) 输入信号的高/ 低电平宽度的测量:在定时器输入引脚(TI)的输入信号的一个边沿开始计数并且在另一个边沿捕捉计数值,从而测量输入信号的高电平或者低电平的宽度。
- 7) 延迟计数器:在定时器输入引脚(TI)的输入信号的有效边沿开始计数并且在经过任意延迟期间后产生中断。

6.13.2 多通道联动运行功能

多通道联动运行功能可将主控通道(主要控制周期的基准定时器)和从属通道(遵从主控通道运行的定时器) 组合实现的功能。多通道联动运行功能能用作以下模式:

- 1) 单触发脉冲输出:将2个通道成对使用,生成能任意设定输出时序和脉宽的单触发脉冲。
- 2) PWM(Pulse Width Modulation)输出:将2个通道成对使用,生成能任意设定周期和占空比的脉冲。
- 3) 多重PWM(Pulse Width Modulation)输出:能通过扩展PWM 功能并且使用1个主控通道和多个从属通道,以固定周期生成最多7种任意占空比的PWM信号。

6.13.3 8 位定时器运行功能

8位定时器运行功能可将16位定时器通道用作2个8位定时器通道的功能。(只能使用通道1和通道3)

6.13.4 LIN-bus 支持功能

Timer4 单元可用于检查 LIN-bus 通信中的接收信号是否适合 LIN-bus 通信格式。

- 1) 唤醒信号的检测:在UART串行数据输入引脚(RxD)的输入信号的下降沿开始计数并且在上升沿捕捉计数值,从而测量低电平宽度。如果该低电平宽度大于等于某固定值,就认为是唤醒信号。
- 2) 间隔场的检测:在检测到唤醒信号后,从UART串行数据输入引脚(RxD)的输入信号的下降沿开始计数 并且在上升沿捕捉计数值,从而测量低电平宽度。如果该低电平宽度大于等于某固定值,就认为是间隔场。
- 3) 同步场脉宽的测量:在检测到间隔场后,测量UART串行数据输入引脚(RxD)的输入信号的低电平宽度和高电平宽度。根据以此方式测量的同步场的位间隔,计算波特率。

6.14 EPWM 输出控制电路

使用Timer4的PWM输出功能,实现一个直流电机或者两个步进电机的控制。通过截断源CMP0输出,INTP0输入以及EVENTC事件,能截断输出。通过软件的设定,能从强制截断时进行Hi-Z输出、低电平输出、高电平输出以及禁止截断输出的4种输出中进行选择。

6.15 15 位间隔定时器

本产品内置一个15位间隔定时器,可按事先设定的任意时间间隔产生中断(INTIT),可用于从深度睡眠模式中唤醒。

6.16 时钟输出/蜂鸣器输出控制电路

时钟输出控制器用于给外围IC提供时钟,蜂鸣器输出控制器用于输出蜂鸣器频率的方波。由专门的引脚实现时 钟输出或者蜂鸣器输出。

6.17 通用串行通讯单元

本产品内置2个通用串行通讯单元,每个单元最多有4个串行通讯通道。能实现标准SPI、简易SPI、UART和简易I2C的通信功能。

6.17.1 3线串行接口(简易 SPI)

与主控设备输出的串行时钟(SCK)同步进行数据的发送和接收。

这是使用1条串行时钟(SCK)、1条发送串行数据(SO)和1条接收串行数据(SI)共3条通信线进行通信的时钟同步通信接口。

[数据的发送和接收]

- ▶ 7位或者8位的数据长度
- 发送和接收数据的相位控制
- ➤ MSB/LSB优先的选择

[时钟控制]

- ▶ 主控或者从属的选择
- ▶ 输入/输出时钟的相位控制
- ▶ 由预分频器和通道内部计数器产生的传送周期
- ▶ 最大传送速率

主控通信: Max.f_{CLK}/2

从属通信: Max.f_{MCK}/6

[中断功能]

▶ 传送结束中断、缓冲器空中断

[错误检测标志]

▶ 溢出错误

6.17.2 带从属片选功能的简易 SPI

支持从属片选输入功能的SPI串行通信接口。这是使用一个从属片选输入(SSI)、1条串行时钟(SCK)、1条发送串行数据(SO)和1条接收串行数据(SI)共4条通信线进行通信的时钟同步通信接口。

[数据的发送和接收]

- > 7位或者8位的数据长度
- ▶ 发送和接收数据的相位控制
- ➤ MSB/LSB优先的选择
- 发送和接收数据的电平设定

[时钟控制]

- ▶ 输入/输出时钟的相位控制
- ▶ 由预分频器和通道内部计数器产生的传送周期
- ▶ 最大传送速率

从属通信: Max.f_{MCK}/6

[中断功能]

▶ 传送结束中断、缓冲器空中断

[错误检测标志]

▶ 溢出错误

6.17.3 UART

通过串行数据发送(TxD)和串行数据接收(RxD)共2条线进行异步通信的功能。使用这2条通信线,按数据帧(由起始位、数据、奇偶校验位和停止位构成)与其他通信方进行异步(使用内部波特率)的数据发送和接收。能通过使用发送专用(偶数通道)和接收专用(奇数通道)共2个通道来实现全双工UART 通信,而且还能通过组合Timer4单元和外部中断(INTP0)来支持LIN-bus。

[数据的发送和接收]

- > 7位、8位或者9位的数据长度
- ➤ MSB/LSB优先的选择
- 发送和接收数据的电平设定、反相的选择
- 奇偶校验位的附加、奇偶校验功能
- ▶ 停止位的附加、停止位的检测

[中断功能]

- ▶ 传送结束中断、缓冲器空中断
- 帧错误、奇偶校验错误或者溢出错误引起的错误中断

[错误检测标志]

帧错误、奇偶校验错误、溢出错误

[LIN-bus功能]

- ▶ 唤醒信号的检测
- ▶ 间隔场(BF)的检测
- ▶ 同步场的测量、波特率的计算

6.17.4 简易 I2C

通过串行时钟(SCL)和串行数据(SDA)共2条线与多个设备进行时钟同步通信的功能。因为此简易I2C是为了与闪存、A/D转换器等设备进行单通信而设计的,所以只能用作主控设备。开始条件和停止条件与操作控制寄存器一样,必须遵守AC特性,通过软件进行处理。

[数据的发送和接收]

- ▶ 主控发送、主控接收(只限于单主控的主控功能)
- ➤ ACK输出功能、ACK检测功能
- ▶ 8位数据长度(在发送地址时,用高7位指定地址,用最低位进行R/W控制)
- ▶ 通过软件产生开始条件和停止条件

[中断功能]

▶ 传送结束中断

[错误检测标志]

➤ ACK错误、溢出错误

[简易I2C不支持的功能]

- ▶ 从属发送、从属接收
- ▶ 多主控功能(仲裁失败检测功能)
- ▶ 等待检测功能

6.18 标准串行接口 SPI

串行接口 SPI 有以下 2 种模式:

- 运行停止模式:这是用于不进行串行传送时的模式,能降低功耗
- ➤ 3-wire串行I/O模式:此模式通过串行时钟(SCK)和串行数据总线(MISO和MOSI)的3条线,与多个设备进行8位或16位数据传送。

6.19 标准串行接口 IICA

串行接口 IICA 有以下 3 种模式:

- ▶ 运行停止模式:这是用于不进行串行传送时的模式,能降低功耗。
- ➤ I2C总线模式(支持多主控):此模式通过串行时钟(SCLA)和串行数据总线(SDAA)的2条线,与多个设备进行8位数据传送。符合I2C总线格式,主控设备能在串行数据总线上给从属设备生成"开始条件"、"地址"、"传送方向的指示"、"数据"和"停止条件"。从属设备通过硬件自动检测接收到的状态和数据。能通过此功能简化应用程序的I2C总线控制部分。因为串行接口IICA的SCLA引脚和SDAA引脚用作漏极开路输出,所以串行时钟线和串行数据总线需要上拉电阻。
- ▶ 唤醒模式:在深度睡眠模式中,当接收到来自主控设备的扩展码或者本地站地址时,能通过产生中断请求信号(INTIICA)解除深度睡眠模式。通过IICA控制寄存器进行设定。

6.20 串行音频接口 SSI

1 通道串行音频接口,可以向支持不同音频数据格式的多个设备发送和接收音频设备:

- 通信方式:主或从,发送和接收(全双工通信)
- ▶ 通信格式: I2S格式, 单声道格式
- ▶ FIFO: 4字节*8段发送或接收FIFO

6.21 QSPI

1通道Quad SPI,用于连接具有SPI兼容接口的串行ROM(非易失性存储器,例如串行闪存,串行EEPROM或串行FeRAM):

- ▶ 支持扩展SPI, Dual SPI, Quad SPI协议
- ▶ 可配置为SPI模式0和模式3
- ▶ 地址宽度可选8, 16, 24, 32位
- 时序可配置以支持各种串行闪存配置
- ➤ Flash读取功能:支持读取,快速读取,快速读取双路输出,快速读取双路I/O,快速读取四路输出和快速读取四路I/O指令
- ▶ 通过软件控制灵活支持各种串行闪存指令和功能,包括擦除,写入,ID读取和掉电控制

6.22 USB

1 通道 USB 模块,兼容 USB 2.0 规范,支持主机控制器模式,设备控制器模式和 OTG 功能。主机控制器支持全速和低速传输,设备控制器支持全速传输。内置的 USB 收发器,支持控制传输,同步传输,批量传输和中断传输。

支持最大10管道的数据传输FIFO,管道0是默认DCP管道。根据外围设备和通讯需求,可将任意端点号配置到 管道1~9。

兼容USB BC1.2规范。

6.23 LCD BUS 接口

LCD总线接口有如下功能:

- ▶ 支持两种不同的总线标准: 8080模式, 6800模式
- ▶ 支持8位/16位读写操作
- ▶ 传输速度可控(最快10MHz)
- 内部数据传输使能或外部总线访问完成时,可触发DMA传输
- ▶ 支持DMA读写

6.24 模数转换器 (ADC)

本产品内置12位分辨率的模数转换器SARADC,可将模拟输入转换为数字值,支持多达28个通道的ADC模拟输入(ANIO~ANI34)。该ADC含有以下的功能:

- ▶ 12位分辨率、转换速率1.42Msps。
- ▶ 触发方式:支持软件触发,硬件触发和待机状态下的硬件触发
- ▶ 通道选择:支持单通道选择和多通道扫描两种模式
- > 转换模式:支持单次转换和连续转换
- ➤ 工作电压: 支持1.8V < VDD < 4.4V的工作电压范围
- ▶ 可检测内置基准电压(1.45V)和温度传感器。

ADC 能通过下述的模式组合设定各种A/D 转换模式。

	## ## # I # IS	V2.14 M IB V + TV 4 IS	
	软件触发	通过软件操作来开始转换。	
<u> </u>	硬件触发无等待模式	通过检测硬件触发来开始转换。	
触发模式	硬件触发等待模式	在切断电源的转换待机状态下,通过检测硬件触发来接通电源,在经过	
		A/D电源稳定等待时间后自动开始转换。	
	选择模式	选择1个通道的模拟输入,进行A/D转换。	
通道选择模式	扫描模式	按顺序对4个通道的模拟输入进行A/D转换。能选择ANIO~ANI15中连续	
		的4个通道作为模拟输入。	
杜松拱	单次转换模式	对所选通道进行1次A/D转换。	
转换模式	连续转换模式	对所选通道进行连续的A/D转换,直到被软件停止为止。	
采样时间/转换时间	列 采样时钟数/转换时钟数	采样时间可由寄存器设定,采样时钟数默认值为13.5个clk,转换时钟数	
木件时间/粒探时间		Min值为31.5个clk。	

6.25 Sigma-Delta ADC

Sigma-Delta ADC 具有以下特性:

- ◆ 内置 LDO
- ◆ 支持单路差分输入
- ◆ 内置振荡器
- ◆ 集成温度传感器
- ◆ 带休眠功能
- ◆ 2 线 SPI 接口, 最快速率为 1.1MHz
- ◆ ADC 功能特性:
 - 24 位无失码;
 - PGA 放大倍数可选: 1、2、4、8、16、32、64、128、256;
 - 输出速率(ODR)可选: 2.5Hz-2.56KHz;
 - PGA=128、ODR=10Hz、SET_LDO=00 时,有效分辨率为 20.6 位;
 - PGA=128、ODR=10Hz、SET_LDO=00 时,等效输入噪声 30nVrms。

6.26 可编程增益放大器 (PGA)

本产品内置 1 路可编程增益放大器 (PGA0), 具有如下功能:

- ▶ 多级增益可选(1/2/4/8/16/32/64/128)。
- ▶ PGAO输出带采样保持电路
- ▶ 支持失调申.压修调
- ▶ 支持单端/伪差分输入
- ▶ 支持 PGA 输出测试。
- PGA 输出可接内部模拟比较器输入进行整形。
- ▶ PGA0的输出可被选为用于A/D转换器的模拟输入或者比较器0(CMP0)正端的模拟输入。
- ▶ 支持失调电压软件修调。

6.27 比较器 (CMP)

本产品内置两通道带迟滞比较器CMP0和CMP1, 具有以下功能:

- 能选择比较器高速模式、比较器低速模式或者比较器窗口模式。
- 能给基准电压选择外部基准电压输入和内部基准电压。
- 能选择噪声消除数字滤波器的消除宽度。
- ▶ 能检测比较器输出的有效边沿并且产生中断信号。
- 能检测比较器输出的有效边沿并且将事件信号输出到联动控制器。

6.28 两线串行调试端口(SW-DP)

ARM 的 SW-DP 接口允许通过串行线调试工具连接到单片机。

6.29 安全功能

6.29.1 闪存 CRC 运算功能(高速 CRC、通用 CRC)

通过CRC 运算检测闪存的数据错误。

能根据不同的用途和使用条件,分别使用以下2个CRC。

- ▶ 高速CRC:在初始化程序中,能停止CPU的运行并且高速检查整个代码闪存区。
- ▶ 通用 CRC:在 CPU 运行中,不限于代码闪存区而能用于多用途的检查。

6.29.2 RAM 奇偶校验错误检测功能

在读 RAM 数据时, 检测奇偶校验错误。

6.29.3 SFR 保护功能

防止因 CPU 失控而改写重要的 SFR(Special Function Register)。

6.29.4 非法存储器存取检测功能

检测对非法存储器区域(没有存储器的区域或者存取受限的区域)的非法存取。

6.29.5 频率检测功能

能使用 Timer4 单元自检测 CPU 或外围硬件时钟频率。

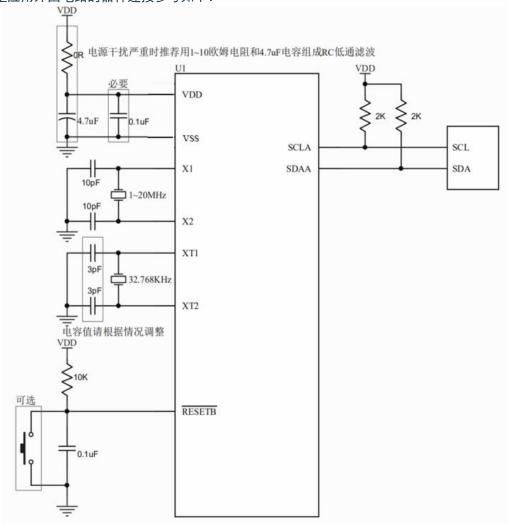
6.29.6 A/D 测试功能

通过对A/D转换器的正(+)基准电压、负(–)基准电压、模拟输入通道(ANI)、温度传感器输出电压以及内部基准电压进行A/D 转换来对A/D 转换器进行自检测。

6.29.7 输入/输出端口的数字输出信号电平检测功能

在输入/输出端口为输出模式时,能读引脚的输出电平。

6.30 按键功能


能通过按键中断输入引脚(KR0~KR7)输入下降沿,产生键中断(INTKR)。

7 电气特性

7.1 典型应用外围电路

MCU 典型应用外围电路的器件连接参考如下:

7.2 绝对最大电压额定值

(TA=-40~+85°C)

项目	符号	条件	额定值	单位
电源电压	VDD		- 0.5~+4.4	V
		PA00~PA14、PB00~PB06、PC00~PC15、		
输入电压	VI	PD00~PD15、PH00~PH04、EXCLK、EXCLKS、	- 0.3~VDD+0.3 ^{注1}	V
		RESETB		
松山中区	VO	PA00~PA14、PB00~PB06、PC00~PC15、	- 0.3~VDD+0.3 ^{注1}	V
输出电压	VO	PD00~PD15、PH01~PH04	- 0.3~VDD+0.3	V
描划绘》中区	VAI	ANIO~ANI34	- 0.3~VDD+0.3 并且	V
模拟输入电压	VAI	ANIU~ANI34	- 0.3~AVREF(+)+0.3 ^{± 1, 2}	V

注: 1. 不超过 4.4V。

2. A/D 转换对象的引脚不能超过 AVREF(+)+0.3。

注意:即使是各项目中的 1 个项目瞬间超过绝对最大额定值,也可能降低产品的质量。绝对最大额定值是可能给产品带来物理性损伤的额定值,必须在不超过额定值的状态下使用产品。

备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. AVREF(+): A/D 转换器的正(+)基准电压
- 3. 将 VSS 作为基准电压。

7.3 绝对最大电流额定值

 $(T_A = -40 \sim +85^{\circ}C)$

项目	符号		条件	额定值	单位
		每个引脚	PA00~PA14、PB00~PB06、PC00~	- 40	m Λ
	10114	母"行柳	PC15、PD00~PD15、PH01~PH04	- 40	mA
克 由亚松山西达	IOH1	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	PB00~PB06、PD00~PD15	- 70	mA
高电平输出电流		引脚合计 - 170mA	PA00~PA14、PC00~PC15	- 100	mA
	10110	每个引脚	PH01~PH04	- 3	mA
	IOH2	引脚合计	FNOT SEND4	- 15	mA
		每个引脚	PA00~PA14、PB00~PB06、PC00~	40	mA
	IOL1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	PC15、PD00~PD15、PH01~PH04	40	IIIA
低电平输出电流	IOLI	71 ntn 4 1 4 7 0 4	PB00~PB06、PD00~PD15	100	mA
似电平制面电流		引脚合计 170mA	PA00~PA14、PC00~PC15	120	mA
	IOL2	每个引脚	PH01~PH04	15	mA
	IOLZ	引脚合计	PH01~PH04	45	mA
工作环接泪庇	TA	通常运行时		4005	°C
工作环境温度	IA	闪存编程时		- 40~+85	C
保存温度	Tstg			- 65 ∼ +150	°C

注意:即使是各项目中的 1 个项目瞬间超过绝对最大额定值,也可能降低产品的质量。绝对最大额定值是可能给产品带来物理性损伤的额 定值,必须在不超过额定值的状态下使用产品。

备注: 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。

www.mcu.com.cn 39 / 66 Rev1.13

7.4 振荡电路特性

7.4.1 X1, XT1 特性

(T_A=-40~+85°C 、1.8V≤VDD≤4.4V 、VSS=0V)

项目	谐振器	条件	MIN	TYP	MAX	单位
X1 时钟振荡频率(fx)	陶瓷谐振器/晶体谐振器	1.8V≤VDD≤4.4V	1.0	-	20.0	MHz
XT1 时钟振荡频率(fxt)	晶体谐振器	1.8V≤VDD≤4.4V	32	32.768	35	kHz

注:

只表示振荡电路的频率容许范围,指令执行时间请参照 AC 特性。

请委托谐振器厂商给予安装电路后的评估,并且在确认振荡特性后使用。

7.4.2 内部振荡器特性

 $(T_A = -40 \sim +85^{\circ}C, 1.8V \leq VDD \leq 4.4V, VSS = 0V)$

谐振器	条件	MIN	TYP	MAX	单位
高速内部振荡器的时钟频率(fIH) ^{注 1,2}	-	1.0	-	64.0	MHz
高速内部振荡器的时钟频率精度	T _A = − 20~+85°C	-1.0	-	+1.0	%
同述內部抵物館的的研樂學相及	T _A = − 40~ − 20°C	-1.5 ^{注 3}	-	+1.5 ^{注 3}	%
低速内部振荡器的时钟频率(flL)	-	10	15	20	kHz

注:

- 1. 通过选项字节选择高速内部振荡器的频率。
- 2. 只表示振荡电路的特性, 指令执行时间请参照 AC 特性。
- 3. 低温规格值由设计保证,量产不测低温条件。

7.4.3 PLL 振荡器特性

(TA=-40~+85°C、1.8V≤VDD≤4.4V、VSS=0V)

谐振器	条件	MIN	TYP	MAX	单位
PLL 输入频率 ^{注1}	-	4.0	-	8.0	MHz
PLL 锁定时间	-	40	-	-	μs
UPLL 输入频率	-	4.0	-	8.0	MHz
UPLL 锁定时间	-	40	-	-	μs

注: 1. 只表示振荡电路的特性,指令执行时间请参照 AC 特性

7.5 DC 特性

7.5.1 引脚特性

(TA=-40~+85°C、1.8V≤VDD≤4.4V、VSS=0V)

项目	符号	条件		MIN	TYP	MAX	单位
		PA00~PA06、PA09~PA14、 PB00~PB06、PC00~PC15、 PD00~PD15 单独 1 个引脚	1.8V≤VDD≤4.4V -40~+85°C	-	-	-12.0 ^{±2}	mA
		PB00~PB06、PD00~PD15 引脚合计(占空比≤70%时 ^{±3})	4.0V≤VDD≤4.4V -40~+85°C	-	-	-60.0	mA
	IOH1		2.4V≤VDD<4.0V	-	-	-12.0	mA
高电平输出	ЮПТ		1.8V≤VDD<2.4V	-	-	-6.0	mA
电流 注1		PA00~PA14、PC00~PC15	4.0V≤VDD≤4.4V -40~+85°C	-	-	-80.0	mA
		引脚合计(占空比≤70%时 ^{注3})	2.4V≤VDD<4.0V	-	-	-20.0	mA
			1.8V≤VDD<2.4V	-	-	-10.0	mA
		引脚合计(占空比≤70%时 ^{±3})	1.8V≤VDD≤4.4V -40~+85°C	-	-	-140.0	mA
	IOH2	PH01~PH04 单独 1 个引脚	1.8V≤VDD≤4.4V	-	-	-2.5 ^{注 2}	mA
	IOH2	引脚合计(占空比≤70%时 ^{注3})	1.8V≪VDD≪4.4V	-	-	-10	mA

注:

- 1. 这是即使电流从 VDD 引脚流到输出引脚也保证器件工作的电流值。
- 2. 不能超过合计的电流值。
- 3. 这是"占空比≤70%"条件的输出电流值。

改为占空比>70%的输出电流值能用以下的计算式进行计算(将占空比改为 n% 的情况)。

• 引脚合计的输出电流= (IOH×0.7)/(n×0.01)

<计算例子> IOH =-10.0mA、n =80%

引脚合计的输出电流= $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7 \text{mA}$

各引脚的电流不会因占空比而变, 而且不会流过绝对最大额定值以上的电流。

备注: 在没有特别指定的情况下, 复用引脚的特性和端口引脚的特性相同。

www.mcu.com.cn 41 / 66 Rev1.13

 $(T_A = -40 \sim +85^{\circ}C, 1.8V \leq VDD \leq 4.4V, VSS = 0V)$

项目	符号	条件		MIN	TYP	MAX	单位
		PA00~PA14、PB00~PB06、 PC00~PC15、PD00~PD15 单独 1 个引脚	1.8V≤VDD≤4.4V -40~+85°C	1	1	35 ^{注 2}	mA
		PB00~PB06、PD00~PD15	4.0V≤VDD≤4.4V -40~+85°C	-	-	100	mA
	IOL1	引脚合计(占空比≤70%时 ^{注3})	2.4V < VDD < 4.0V	-	-	30	mA
			1.8V≤VDD<2.4V	-	-	15	mA
低电平输出电流 ^{注1}		PA00~PA14、PC00~PC15	4.0V≤VDD≤4.4V -40~+85°C	-	-	120	mA
			2.4V≤VDD<4.0V	-	-	40	mA
			1.8V≤VDD<2.4V	1	-	20	mA
		全部引脚合计(占空比≤70%时 ^{±3})	1.8V≤VDD≤4.4V -40~+85°C	-	-	150	mA
	101.2	PH01~PH04 单独 1 个引脚	1.8V≤VDD≤4.4V	-	-	10 ^{½ 2}	mA
	IOL2	全部引脚合计(占空比≤70%时 ^{±3})	1.8V≤VDD≤4.4V	-	-	40	mA

注:

- 1. 这是即使电流从输出引脚流到 VSS 引脚也保证器件工作的电流值。
- 2. 不能超过合计的电流值。
- 3. 这是"占空比≤70%"条件的输出电流值。

改为占空比 > 70% 的输出电流值能用以下的计算式进行计算(将占空比改为 n% 的情况)。

• 引脚合计的输出电流= (IOL×0.7)/(n×0.01)

<计算例子> IOL= 10.0mA、n = 80%

引脚合计的输出电流= (10.0×0.7)/(80×0.01) ≈ 8.7mA

各引脚的电流不会因占空比而变,而且不会流过绝对最大额定值以上的电流。

备注: 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。

 $(T_A=-40\sim+85^{\circ}C$, $1.8V\leq VDD\leq 4.4V$, VSS=0V)

项目	符号	条件		MIN	TYP	MAX	单位	
		PA00~PA14、PB00~PB06、PC00~						
高电平输入电压	VIH1	PC15、PD00~PD15、PH00~PH04、	施密特输入	0.8VDD	-	VDD	V	
		EXCLK, EXCLKS, RESETB						
		PA00~PA14、PB00~PB06、PC00~						
低电平输入电压	VIL1	PC15、PD00~PD15、PH00~PH04、	施密特输入	0	-	0.2VDD	V	
		EXCLK, EXCLKS, RESETB						

备注: 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。

 $(T_A=-40 \sim +85^{\circ}C, 1.8V \le VDD \le 4.4V, VSS=0V)$

项目	符号	条件		MIN	TYP	MAX	单位
			4.0V≤VDD≤4.4V、 IOH1= - 12.0mA	VDD - 1.5	-	-	V
	V014	PA00~PA14、PB00~PB06、	4.0V≤VDD≤4.4V、 IOH1= - 6.0mA	VDD - 0.7	-	-	V
	VOH1	PC00~PC15、PD00~PD15	2.4V≤VDD≤4.4V、 IOH1= - 3.0mA	VDD - 0.6	-	-	V
京内亚松山内 厅			1.8V≤VDD≤4.4V、 IOH1= - 2mA	VDD - 0.5	-	-	V
高电平输出电压			4.0V≤VDD≤4.4V、 IOH2= - 2.5mA	VDD - 1.5	-	-	V
	VOUS	PH01∼04	4.0V≤VDD≤4.4V、 IOH2= - 1.5mA	VDD - 0.7	-	-	V
	VOH2		2.4V≤VDD≤4.4V、 IOH2= - 0.5mA	VDD - 0.6	-	-	V
			1.8V≤VDD≤4.4V、 IOH2= - 0.4mA	VDD - 0.5	-	-	V
			4.0V≤VDD≤4.4V、 IOL1=35.0mA	-	-	1.2	V
		PA00~PA14、PB00~PB06、 PC00~PC15、PD00~PD15	4.0V≤VDD≤4.4V、 IOL1=20.0mA	-	-	0.7	V
	VOL1		2.4V≤VDD≤4.4V、 IOL1=9.0mA	-	-	0.4	V
/r to Tribulation			1.8V≤VDD≤4.4V、 IOL1=6.0mA	-	-	0.4	V
低电平输出电压			4.0V≤VDD≤4.4V、 IOL2=10.0mA	-	-	1.2	V
	VOL2	DU04 - 04	4.0V≤VDD≤4.4V、 IOL2=6.0mA	-	-	0.7	V
	VOL2	PH01~04	2.4V≤VDD≤4.4V、 IOL2=2.5mA	-	-	0.4	V
			1.8V≤VDD≤4.4V、 IOL2=1.5mA	-	-	0.4	V

备注: 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。

 $(T_A = -40 \sim +85^{\circ}C , 1.8V \leq VDD \leq 4.4V, VSS = 0V)$

项目	符号	Ś	条件	MIN	TYP	MAX	单位
	ILIH1	PA00~PA14、PB00~ PB06、PC00~PC15、 PD00~PD15、PH00	VI=VDD	,	-	1	μΑ
高电平输入漏电流	ILIH2	RESETB	VI=VDD	-	-	1	μΑ
	ILIH3	PH01~04 (X1, X2, EXCLK, XT1, XT2,	VI=VDD,输入端口和外部 时钟输入时	-	-	1	μΑ
		EXCLKS)	VI=VDD,连接谐振器时	1	-	10	μΑ
	ILIL1	PA00~PA14、PB00~ PB06、PC00~PC15、 PD00~PD15、PH00	VI=VSS	1	-	-1	μΑ
低电平输入漏电流	ILIL2	RESETB	VI=VSS	-	-	-1	μΑ
	ILIL3	PH01~04 (X1, X2, EXCLK, XT1, XT2,	VI=VSS,输入端口和外部 时钟输入时	1	-	-1	μΑ
		EXCLKS)	VI=VSS,连接谐振器时	1	-	-10	μΑ
内部上拉电阻	RU	PA00~PA06、PA10~ PA14、PB00~PB06、 PC00~PC15、PD00~ PD15、PH00~PH02	VI=VSS,输入端口时	10	30	100	ΚΩ
内部下拉电阻	RD	PA00~PA06、PA09~ PA14、PB00~PB06、 PC00~PC15、PD00~ PD15	VI=VDD,输入端口时	10	30	100	ΚΩ

备注: 在没有特别指定的情况下, 复用引脚的特性和端口引脚的特性相同。

7.5.2 电源电流特性

(TA=-40~+85°C、1.8V≤VDD≤4.4V、Vss=0V)

项目	符号				MIN.	TYP.	MAX.	单位	
			宣海中郊把茶器	fHOCO=64MHz、fIH=	$f_{HOCO}=64MHz$, $f_{IH}=64MHz^{\pm 3}$		7.6	12.5	mA
			高速内部振荡器	fHOCO=32MHz、fIH=	=32MHz ^{注3}	-	5.8	7.8	IIIA
		高速主系统时钟	f _{MX} =20MHz ^{±2}	输入方波	-	4.0	5.2	mA	
	I _{DD1}	运行模式	同胚土系统的拼	IMX-20MI	连接晶振	-	4.0	5.2	IIIA
		副系统时钟运行	fa 22 700以上 ^{注4}	输入方波	-	70	85	uA	
			副 苏统的押巡门	f _{SUB} =32.768kHz ^{±4}	连接晶振	-	70	85	uA
			低速内部振荡器	fIL=15kHz ^{注8}		-	70	85	uA
电源电流 注1			高速内部振荡器	fHOCO=64MHz、fIH=64MHz ^{±3}		-	1.8	7.0	mA
Surv. Suyis			1-321-341-33344	fHOCO=32MHz、fIH=32MHz ^{⅓3}		-	1.2	3.8	
				f _{MX} =20MHz ^{⅓2}	输入方波	-	0.7	2.5	т Л
	I _{DD2}	睡眠模式	高速主系统时钟	IMX-20MI IZ	连接晶振	-	0.7	2.5	mA
			可多统叶钟先生	.	输入方波	-	1.2	14.5	
			副系统时钟运行	f _{SUB} =32.768kHz ^{≥5}	连接晶振	-	1.2	14.5	uA
			低速内部振荡器	fIL=15kHz ^{注8}		-	1.4	15	uA
	I _{DD3} ^{注6}	6 深睡眠模式	T _A =-40°C~+70°C	10°C~+70°C VDD=3.0V		-	0.7	4.0	uA
		注7	T _A =-40°C~+85°C	VDD=3.0V			0.7	7.0	uA

注:

- 1) 这是流过 VDD 的电流,包含输入引脚固定为 VDD 或者 VSS 状态的输入漏电流。TYP.值:CPU 处于乘法运算指令执行(IDD1),且不包含外围工作电流。 MAX.值:CPU 处于全指令执行动作(IDD1),且包含外围工作电流,但不包含流到 A/D 转换器、LVD 电路、I/O 端口以及内部上拉或者下拉电阻的电流,也不包含改写数据闪存时的电流。
- 2) 这是高速内部振荡器和副系统时钟停止振荡的情况。
- 3) 这是高速主系统时钟和副系统时钟停止振荡的情况。
- 4) 这是高速内部振荡器和高速主系统时钟停止振荡的情况。
- 5) 这是高速内部振荡器和高速主系统时钟停止振荡的情况。包含流到 RTC 的电流,但是不包含流到 15 位间隔定时器和看门狗定时器的电流。
- 6) 不包含流到 RTC、15 位间隔定时器和看门狗定时器的电流。
- 7) 有关深度睡眠模式中副系统时钟运行时的电流值,请参照睡眠模式中副系统时钟运行时的电流值。
- 8) 这是高速内部振荡器,高速主系统时钟和副系统时钟停止振荡的情况。

备注:

- 1) fHOCO: 高速内部振荡器的时钟频率, fill: 高速内部振荡器提供的系统时钟频率。
- 2) fSUB: 外部副系统时钟频率(XT1/XT2时钟振荡频率)。
- 3) fmx:外部主系统时钟频率(X1/X2时钟振荡频率)。
- 4) f止: 低速内部振荡器的时钟频率。
- 5) TYP. 值的温度条件是TA=25°C。

(TA=-40~+85°C、1.8V≤VDD≤4.4V、Vss=0V)

参数	符号	条件		MIN.	TYP.	MAX.	Unit
低速内部振荡器工作电流	IFIL ^{注1}	-		-	0.2	-	uA
RTC工作电流	IRTC ^{±1,2,3}	-		-	0.04	-	uA
15 位间隔定时器工作电流	IIT ^{注1,2,4}		-	-	0.02	-	uA
看了狗定时器工作电流	IWDT 注1,2,5	flL=15kHz		-	0.22	-	uA
	IADC ^{注1,6}	ADC HS 模式@64MHz		-	2.2	1	mA
A/D 转换器工作电流		ADC HS 模式@4MHz		-	1.3	1	mA
ND 特別来稿上IPセルル		ADC LC 模式@24MHz		-	1.1	1	mA
		ADC LC模式@4MHz		-	0.8	1	mA
PGA工作电流	IPGA 注1,7	每个通道		-	480	700	uA
以於學工作由法	ICMP ^{±1,8}	每个通道	不使用内部基准电压	-	60	100	uA
比较器工作电流	ICIVIF		使用内部基准电压	-	80	140	uA
LVD工作电流	ILVD 注1,9	-		-	0.08	-	uA

注:

- 1) 这是流过VDD 的电流。
- 2) 这是高速内部振荡器和高速系统时钟停止振荡的情况。
- 3) 这是只流到实时时钟(RTC)的电流(不包含低速内部振荡器和XT1 振荡电路的工作电流)。在运行模式或者睡眠模式中实时时钟 运行的情况下,微控制器的电流值为IDD1或者IDD2加上IRTC的值。另外,当选择低速内部振荡器时,必须加上IFIL。副系统时钟运 行时的IDD2包含实时时钟的工作电流。
- 4) 这是只流到15位间隔定时器的电流(不包含低速内部振荡器和XT1振荡电路的工作电流)。在运行模式或者睡眠模式中15位间隔定时器运行的情况下,微控制器的电流值为IDD1或者IDD2加上IIT的值。另外,当选择低速内部振荡器时,必须加上IFIL。
- 5) 这是只流到看门狗定时器的电流(包含低速内部振荡器的工作电流)。在看门狗定时器运行的情况下,微控制器的电流值为IDD1或者IDD2或者IDD3加上IWDT的值。
- 6) 这是只流到A/D转换器的电流。在运行模式或者睡眠模式中A/D转换器运行的情况下,微控制器的电流值为IDD1或者IDD2加上IADC的值。
- 7) 这是只流到PGA电路的电流。在可编程增益放大器电路运行的情况下,微控制器的电流值为IDD1或者IDD2或者IDD3加上IPGA的值。
- 8) 这是只流到比较器电路的电流。在比较器电路运行的情况下,微控制器的电流值为IDD1或者IDD2或者IDD3加上ICMP的值。
- 9) 这是只流到LVD电路的电流。在LVD电路运行的情况下,微控制器的电流值为IDD1或者IDD2或者IDD3加上ILVD的值。

备注:

- 1) f止: 低速内部振荡器的时钟频率。
- 2) TYP. 值的温度条件是TA=25℃。

7.6 AC 特性

(TA=-40~+85°C, 1.8V≤VDD≤4.4V, VSS=0V)

项目	符号	条件		MIN	TYP	MAX	单位
指令周期	TCY	主系统时钟(fMAIN)运行	1.8V≤VDD≤4.4V	0.015625	-	1	μs
(最短指令执行时间)	101	副系统时钟(fSUB)运行	1.8V≤VDD≤4.4V	28.5	30.5	31.3	μs
从如乏统叶纳斯克	fEX	1.8V≤VDD≤4.4V		1.0	-	20.0	MHz
外部系统时钟频率 	fEXS	1.8V≤VDD≤4.4V		32.0	-	35.0	kHz
	tEXH、	1.8V≤VDD≤4.4V		24	_	_	ns
外部系统时钟输入的高	tEXL	1.00300034.40		24		,	115
低电平宽度	tEXHS、	1.8V≤VDD≤4.4V		13.7			μs
	tEXLS	1.00300034.40		13.7		,	μδ
TI00 \sim TI03, TI10 \sim	tTIH、						
TI13、输入的高低电平	tTIL	1.8V≤VDD≤4.4V		1/f _{MCK} +10	-	-	ns
宽度	THE						
TO00 \sim TO03 $^{\circ}$		4.0V≤VDD≤4.4V		-	-	16	MHz
TO10 ~ TO13、的	fTO	2.4V≤VDD<4.0V		-	-	8	MHz
输出频率		1.8V≤VDD<2.4V		-	-	4	MHz
CLKBUZ0、CLKBUZ1		4.0V≤VDD≤4.4V		-	-	16	MHz
的输出频率	fPCL	2.4V≤VDD<4.0V		-	-	8	MHz
的拥山妙平		1.8V≤VDD<2.4V		-	-	4	MHz
中断输入的高低电平	tINTH、	INTPO ~ INTP3	1.8V≤VDD≤4.4V	4			
宽度	tINTL	INTEU ~ INTES	1.0∨≤∨∪∪≤4.4∨	1	-	-	μs
键中断输入的高低电平	tKR	KR0 ∼ KR5	1.8V≤VDD≤4.4V	250			no
宽度	irk	\sim KCO \sim KCO	1.0∨≤∨∪∪≤4.4∨	250	-	-	ns
RESETB 的低电平宽度	tRSL	-		10	-	-	μs

备注: fMCK: Timer4 单元的运行时钟频率。

7.7 外围功能特性

7.7.1 通用接口单元

1) UART 模式

• (TA=-40~+85°C、1.8V≤VDD≤4.4V、Vss=0V)

话日			规村	各值	单位
项目		余什	MIN	MAX	半世
传送速率	1.8V ≤ VDD ≤ 4.4V	-	-	f _{MCK} /6	bps
传达述 学	1.0V ≤ VDD ≤ 4.4V	最大传送速率的理论值 f _{MCK} =f _{CLK}	-	10.6	Mbps

2) 三线 SPI 模式(主控模式,内部时钟输出)

(TA=-40~+85°C, 1.8V≤VDD≤4.4V, VSS=0V)

花口	<i>የተ</i> 🗆		タル	-40 ∼ +85	5° C	兴 / 六
项目	符号		条件		MAX	单位
			4.0V ≤ VDD ≤ 4.4V	31.25	-	ns
	tKCY1	tKCY1 ≥ 2/f _{CLK}	2.7V ≤ VDD ≤ 4.4V	41.67	-	ns
SCLKp 周期时间	IKCTI	INC 1 1 2 2/1 _{CLK}	2.4V ≤ VDD ≤ 4.4V	65	-	ns
			1.8V ≤ VDD ≤ 4.4V	125	-	ns
		4.0V ≤ VDD ≤ 4.4	·V	tKCY1/2-4	-	ns
CCLV。京/低电亚宝度	tKH1、	2.7V ≤ VDD ≤ 4.4	·V	tKCY1/2-5	-	ns
SCLKp 高/低电平宽度	tKL1	2.4V ≤ VDD ≤ 4.4	·V	tKCY1/2-10	-	ns
		1.8V ≤ VDD ≤ 4.4	·V	tKCY1/2-19	-	ns
		4.0V ≤ VDD ≤ 4.4	·V	12	-	ns
CDIn 准久时间/社 COL Van)	tSIK1	2.7V ≤ VDD ≤ 4.4	·V	17	-	ns
SDIp 准备时间(对 SCLKp↑)	ISIKI	2.4V ≤ VDD ≤ 4.4	·V	20	-	ns
		1.8V ≤ VDD ≤ 4.4V		28	-	ns
SDIp 保持时间 (对 SCLKp↑)	tKSI1	1.8V ≤ VDD ≤ 4.4V		5	-	ns
SCLKp↓→SDOp	tKSO1	1.8V ≤ VDD ≤ 4.4	·V		5	ns
输出延迟时间	ir(301	C=20pF ^{注 1}		_	5	115

注1.: C是SCLKp、SDOp 输出线的负载电容。

注意:通过端口输入模式寄存器和端口输出模式寄存器,将SDIp引脚选择为通常的输入缓冲器并且将SDOp引脚和SCLKp引脚选择为通常的输出模式。

www.mcu.com.cn 48 / 66 Rev1.13

3) 三线 SPI 模式(从属模式,外部时钟输入)

(TA=-40~+85°C, 1.8V≤VDD≤4.4V, Vss=0V)

话日	符号	-	7. A/ -	-40 ∼ +8	85° C	公 / 六
项目	1寸'亏	分	条件		MAX	单位
		4.0V ≤ VDD ≤ 4.4V	20MHz < f _{MCK}	8/f _{MCK}	-	ns
		4.0V \(\text{VDD} \(\text{\text{\text{4.4V}}} \)	f _{MCK} ≤20MHz	6/f _{MCK}	-	ns
COLVA 国期时间	tKCY2	2.7V ≤ VDD ≤ 4.4V	16MHz < f _{MCK}	8/f _{MCK}	-	ns
SCLKp 周期时间	IKC12	2.7 V 3 VDD 3 4.4 V	f _{MCK} ≤16MHz	6/f _{MCK}	-	ns
		2.4V ≤ VDD ≤ 4.4V		6/f _{MCK} and 500	-	ns
		1.8V ≤ VDD ≤ 4.4V		6/f _{MCK} and 750	-	ns
	tKH2、	4.0V ≤ VDD ≤ 4.4V	4.0V ≤ VDD ≤ 4.4V		-	ns
SCLKp 高/低电平宽度	tKL2	2.7V ≤ VDD ≤ 4.4V		tKCY1/2-8	-	ns
	INLZ	1.8V ≤ VDD ≤ 4.4V		tKCY1/2-18	-	ns
SDIp 准备时间	tSIK2	2.7V ≤ VDD ≤ 4.4V		1/f _{MCK} +20	-	ns
(对 SCLKp↑)	ISIKZ	1.8V ≤ VDD ≤ 4.4V		1/f _{MCK} +30	-	ns
SDIp 保持时间 (对 SCLKp↑)	tKSI2	1.8V ≤ VDD ≤ 4.4V	1.8V ≤ VDD ≤ 4.4V		-	ns
		2.7V ≤ VDD ≤ 4.4V C=30pF ^{注 1}			2/f _{MCK} +44	ns
SCLKp↓→SDOp 输出延迟时间	tKSO2	2.4V ≤ VDD ≤ 4.4V C=30pF ^{±1}		-	2/f _{MCK} +75	ns
		1.8V ≤ VDD ≤ 4.4V C=30pF ^{注1}		-	2/f _{MCK} +100	ns

注1: C是SCLKp、SDOp 输出线的负载电容。

注意:通过端口输入模式寄存器和端口输出模式寄存器,将SDIp引脚和SCLKp引脚选择为通常的输入缓冲器并 且将SDOp引脚选择为通常的输出模式。

4) 四线SPI模式(从属模式,外部时钟输入)

 $(T_{A=-40}\sim +85^{\circ}C, 1.8V \leq VDD \leq 4.4V, Vss=0V)$

项目	<i>የተ</i> ፡፡	条件		符号 条件		−40 ∼	单位
坝日	117.5			MIN	MAX	丰瓜	
		DAPmn=0	2.7V ≤ VDD ≤ 4.4V	120	-	ns	
SSI00 建立时间	tSSIK	DAFIIII=0	1.8V ≤ VDD ≤ 4.4V	200	-	ns	
33100 建亚州미	toont	DAPmn=1	2.7V ≤ VDD ≤ 4.4V	1/f _{MCK} +120	-	ns	
		D/II IIII=1	1.8V ≤ VDD ≤ 4.4V	1/f _{MCK} +200	-	ns	
		DAPmn=0	2.7V ≤ VDD ≤ 4.4V	1/f _{MCK} +120	-	ns	
SSI00 保持时间	tKSSI	DAPMn=1	1.8V ≤ VDD ≤ 4.4V	1/f _{MCK} +200	•	ns	
33100			2.7V ≤ VDD ≤ 4.4V	120	1	ns	
		DAFINIE!	1.8V ≤ VDD ≤ 4.4V	200	-	ns	

注意:通过端口输入模式寄存器和端口输出模式寄存器,将SDIp引脚和SCLKp引脚选择为通常的输入缓冲器并且将SDOp引脚选择为通常的输出模式。

www.mcu.com.cn 49 / 66 Rev1.13

5) 简易IIC模式

(TA=-40~+85°C, 1.8V≤VDD≤4.4V, Vss=0V)

项目	符号	条件	−40 ∼	+85°C	单位
		余性	MIN	MAX	平114
		2.7V ≤ VDD ≤ 4.4V (Cb = 50 pF, Rb = 2.7 kΩ)	-	1000 ^{注 1}	kHz
SCLr 时钟频率	fSCL	1.8V ≤ VDD ≤ 4.4V (Cb = 100 pF, Rb = 3 kΩ)	-	400 ^{注 1}	kHz
		1.8V ≤ VDD ≤ 2.7V (Cb = 100 pF, Rb = 5 kΩ)	-	300 ^{注 1}	kHz
		2.7V ≤ VDD ≤ 4.4 V (Cb = 50 pF, Rb = 2.7 kΩ)	475	-	ns
当 SCLr 为低时 保持时间	tLOW	1.8V ≤ VDD ≤ 4.4V (Cb = 100 pF, Rb = 3 kΩ)	1150	-	ns
		1.8V ≤ VDD ≤ 2.7V (Cb = 100 pF, Rb = 5 kΩ)	1550	-	ns
		$2.7V \le VDD \le 4.4V \text{ (Cb} = 50 \text{ pF, Rb} = 2.7 \text{ k}\Omega\text{)}$	475	-	ns
当 SCLr 为高时 保持时间	tHIGH	1.8V ≤ VDD ≤ 4.4V (Cb = 100 pF, Rb = 3 kΩ)	1150	-	ns
		1.8V ≤ VDD ≤ 2.7V (Cb = 100 pF, Rb = 5 kΩ)	1550	-	ns
	tSU:	2.7V ≤ VDD ≤ 4.4 V (Cb = 50 pF, Rb = 2.7 kΩ)	1/f _{MCK} +85 ^{注 2}	-	ns
数据建立时间 (接收)	DAT	1.8V ≤ VDD ≤ 4.4V (Cb = 100 pF, Rb = 3 kΩ)	1/f _{MCK} +145 ^{注 2}	-	ns
DAT	DAT	1.8V ≤ VDD ≤ 2.7V (Cb = 100 pF, Rb = 5 kΩ)	1/f _{MCK} +230 ^{注 2}	-	ns
	+UD	2.7V ≤ VDD ≤ 4.4V (Cb = 50 pF, Rb = 2.7 kΩ)	-	305	ns
数据保持时间(发送)	tHD:	1.8V ≤ VDD ≤ 4.4V (Cb = 100 pF, Rb = 3 kΩ)	-	355	ns
	DAT	1.8V ≤ VDD ≤ 2.7V (Cb = 100 pF, Rb = 5 kΩ)	-	405	ns

注: 1.必须至少设定为fMCK/4。

2. fMCK 的设定值不能超过SCLr="L"和SCLr="H"的保持时间。

7.7.2 串行接口 IICA

1) I2C 标准模式

(TA=-40~+85°C、1.8V≤VDD≤4.4V、Vss=0V)

项目	符号	条件	规村	各值	⇔ /÷
坝日	1寸 写	余件	MIN	MAX	单位
SCLA0 时钟频率	fSCL	标准模式: f _{CLK} ≥1MHz	-	100	kHz
启动条件的建立时间	tSU: STA	-	4.7	-	μs
启动条件的保持时间 注1	tHD: STA	-	4.0	-	μs
当 SCLA0 为低时保持时间	tLOW	-	4.7	-	μs
当 SCLA0 为高时保持时间	tHIGH	-	4.0	-	μs
数据建立时间(接收)	tSU: DAT	-	250	-	ns
数据保持时间(发送) ^{注2}	tHD: DAT	-	0	3.45	μs
停止条件的建立时间	tSU: STO	-	4.0	-	μs
总线空闲时间	tBUF	-	4.7	-	μs

注:

- 1. 在产生开始条件或重新开始条件后生成第一个时钟脉冲。
- 2. 在正常传送期间需要保证tHD: DAT 的最大值(MAX.),在进行应答(ACK)时需要等待。

备注:各模式的Cb(通信线电容)的MAX.值和此时的Rb(通信线的上拉电阻值)的值如下: 标准模式:Cb=400pF、Rb=2.7k Ω

2) I2C 快速模式

(TA=-40~+85°C, 1.8V≤VDD≤4.4V, Vss=0V)

项目	符号	条件	规格	·值	单位	
坝日	10.25	余 什	MIN	MAX	半加	
SCLA0 时钟频率	fSCL	快速模式: f _{CLK} ≥3.5MHz	-	400	kHz	
启动条件的建立时间	tSU: STA	-	0.6	-	μs	
启动条件的保持时间 注1	tHD: STA	-	0.6	-	μs	
当 SCLA0 为低时 保持时间	tLOW	-	1.3	-	μs	
当 SCLA0 为高时 保持时间	tHIGH	-	0.6	-	μs	
数据建立时间(接收)	tSU: DAT	-	100	-	ns	
数据保持时间(发送) 注2	tHD: DAT	-	0	0.9	μs	
停止条件的建立时间	tSU: STO	-	0.6	-	μs	
总线空闲时间	tBUF	-	1.3	-	μs	

注:

- 1. 在产生开始条件或重新开始条件后生成第一个时钟脉冲。
- 2. 在正常传送期间需要保证tHD: DAT 的最大值(MAX.),在进行应答(ACK)时需要等待。
- 备注:各模式的Cb(通信线电容)的MAX.值和此时的Rb(通信线的上拉电阻值)的值如下: 快速模式:Cb=320pF、 $Rb=1.1k\Omega$

3) I2C 增强型快速模式

(TA=-40~+85°C、1.8V≤VDD≤4.4V、Vss=0V)

西日	符号	条件	规村	各值	当 /c
项目	打写	行号		MAX	单位
SCLA0 时钟频率	fSCL	增强型快速模式: fcLK≥10MHz	-	1000	kHz
启动条件的建立时间	tSU: STA	-	0.26	-	μs
启动条件的保持时间 注1	tHD: STA	-	0.26	-	μs
当 SCLA0 为低时 保持时间	tLOW	-	0.5	-	μs
当 SCLA0 为高时 保持时间	tHIGH	-	0.26	ı	μs
数据建立时间(接收)	tSU: DAT	-	50	ı	ns
数据保持时间(发送) ^{注2}	tHD: DAT	-	0	0.45	μs
停止条件的建立时间	tSU: STO	-	0.26	-	μs
总线空闲时间	tBUF	-	0.5	-	μs

注:

- 1. 在产生开始条件或重新开始条件后生成第一个时钟脉冲。
- 2. 在正常传送期间需要保证tHD: DAT的最大值(MAX.),在进行应答(ACK)时需要等待。

备注:各模式的Cb(通信线电容)的MAX.值和此时的Rb(通信线的上拉电阻值)的值如下: 增强型快速模式:Cb=120pF、Rb=1.1K ω

7.7.3 USB 单元特性

1) USB特性

 $(VCC = VCC_USB = 3.0 \text{ to } 3.6 \text{ V}, Ta = -20 \text{ to } +85^{\circ}C \text{ (USBCLKSEL} = 1),}$

 $Ta = -40 \text{ to } +85^{\circ}\text{C (USBCLKSEL} = 0))$

			(SEL = 0))	规札	各值	₩ / >	<i>₽</i> #
	项目		符号	MIN	MAX	单位	条件
	输入高电平	<u> </u>	VIH	2.0	-	V	-
输入特性	输入低电平	<u>i</u>	VIL	-	0.8	V	-
制八行注	差分输入员	敏度	VDI	0.2	-	V	DP - DM
	差分共模范	围	VCM	0.8	2.5	V	-
	输出高电平	<u> </u>	VOH	2.8	VCC_USB	V	-
	输出低电平	<u>.</u>	VOL	0.0	0.3	V	-
	交叉电压		VCRS	-	-	V	-
	上升时间	FS	tr	-	-	ns	
输出特性	工/[中][□]	LS	u	-	-	115	-
和山竹江	下降时间	FS	tf	-	-	ns	_
	1、6年4.71日	LS		-	-	115	-
	上升下降	FS	tr/tf	-	-	%	_
	时间比率	LS	ti/ti	-	-	70	
	输出电阻		ZDRV	-	-	Ω	-
VBUS	VBUS 输入	由圧	VIH	VCC x 0.8	-	V	-
V D O O	VDOS ANIJO	· 七.本	VIL	-	VCC x 0.2	V	-
	上拉电阻		RPD	-	-	Ω	-
上拉 下拉	下拉电阻		RPUI	-	-	Ω	-
	山水中田		RPUA	-	-	Ω	-
	D+泄露电流		IDP_SINK	-	-	μΑ	-
	D-泄露电流	ì	IDM_SINK	-	-	μΑ	-
电池充电	DCD 源电流		IDP_SRC	-	-	μΑ	-
规范	Data 检测F	电压	VDAT_REF	0.25	0.4	V	-
	D+源电压		VDP_SRC	0.5	0.7	V	-
	D-源电压		VDM_SRC	0.5	0.7	V	-

2) USB外部电源

项目		规格值		单位	条件
- 坝日 -	MIN	TYP	MAX	半亚	余什
UVDD 供电电流	-	-	50	mA	-
UVDD 供电电压	3.0	-	3.6	V	-

www.mcu.com.cn 53 / 66 Rev1.13

7.8 模拟特性

7.8.1 A/D 转换器特性

A/D 转换器特性的区分

基准电压输入通道	基准电压(+)=AVREFP 基准电压(-)=AVREFM	基准电压(+)=V _{DD} 基准电压(-)=V _{SS}
ANI0~ANI34	4 III = 0.4.4)	4 III (a)
内部基准电压,温度传感器的输出电压	参照7.8.1 1)。	参照 2)。

1) 选择基准电压(+)=AV_{REFP}/ANIO、基准电压(-)=AV_{REFM}/ANI1的情况

(TA=-40~+85°C、1.8V≤AVREFP≤VDD≤4.4V、VSS=0V、基准电压(+)=AVREFP、基准电压(-)=AVREFM=0V)

项目	符号	条件		MIN.	TYP.	MAX.	单位
分辨率	RES	-		-	12	-	bit
综合误差 注1	AINL	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	-	3	-	LSB
转换时间 ^{注3} t _{CO} M		12位分辨率 转换对象: ANI2~ANI15	1.8V≤VDD≤4.4V	45	-		Tmclk
	tCONV	12位分辨率 转换对象:内部基准电压、 温度传感器的输出电压、 PGA输出电压	1.8V≤VDD≤4.4V	72	-	-	Tmclk
零刻度误差 注1	EZS	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	-	0	-	LSB
满刻度误差 注1	E _{FS}	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	-	0	-	LSB
积分线性误差 注1	ILE	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	-	-	±1	LSB
微分线性误差	DLE	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	-	-	±1.5	LSB
		ANI2~ANI34		0	-	AVREFP	V
模拟输入电压	V_{AIN}	内部基准电压(1.8V≤VDD≤4	.4V)	VBGR ^{∄2}		±2	V
		温度传感器的输出电压(1.8V≤VDD≤4.4V)		VTMPS25 ^{±2}			V

- 注: 1. 不包含量化误差(±1/2 LSB)。
 - 2. 请参照 "7.8.5 温度传感器/内部基准电压的特性"。
 - 3. Tmclk为AD的动作时钟周期,最大动作频率为64MHz。

2) 选择基准电压(+)=V_{DD}、基准电压(-)=V_{SS}的情况

(T_A=-40~+85°C、1.8V≤V_{DD}≤4.4V、V_{SS}=0V、基准电压(+)=V_{DD}、基准电压(-)=V_{SS})

项目	符号	条件		MIN.	TYP.	MAX.	单位
分辨率	RES	-		-	12	-	bit
综合误差 注1	AINL	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	1	6	1	LSB
转换时间 ^{注3} tCOI		12位分辨率 转换对象: ANIO~ANI34	1.8V≤VDD≤4.4V	45	-	1	Tmclk
	tCONV	12位分辨率 转换对象:内部基准电压、 温度传感器的输出电压、 PGA输出电压	1.8V≤VDD≤4.4V	72	-	1	Tmclk
零刻度误差	EZS	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	-	0	-	LSB
满刻度误差 注1	E _{FS}	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	1	0	-	LSB
积分线性误差 注1	ILE	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	ı	-	±2	LSB
微分线性误差 註1	DLE	12位分辨率	1.8V ≤AV _{REFP} ≤4.4V	ı	-	±3	LSB
		ANI0~ANI34		0	-	V_{DD}	V
模拟输入电压	V _{AIN}	内部基准电压(1.8V≤VDD≤4.4V)		VBGR ^{±2}			V
		温度传感器的输出电压(1.8V≤VDD≤4.4V)		V	TMPS25	2	V

- 注: 1. 不包含量化误差(±1/2 LSB)。
 - 2. 请参照 "7.8.5 温度传感器/内部基准电压的特性"。
 - 3. Tmclk为AD的动作时钟周期,最大动作频率为64MHz。

7.8.2 Sigma-Delta ADC 最大额定值

名称	符号	最小值	最大值	单位
电源电压	AVDD	-0.3	4.4	V
数字管脚输入电压	-	-0.3	AVDD+0.3	V
工作温度	-	-40	85	°C

7.8.3 Sigma-Delta ADC 数字逻辑特性

参数	最小值	典型值	最大值	单位	条件
VIH	0.7xAVDD	-	AVDD+0.1	V	-
VIL	AGND	-	0.3xAVDD	V	-
VOH	AVDD-0.4	-	AVDD	V	-
VOL	AGND	-	0.2xAVDD	V	-
串口时钟 SCLK 工作频率	0.1	-	1.1	MHz	-

www.mcu.com.cn 56 / 66 Rev1.13

7.8.4 Sigma-Delta ADC 电气特性

参数	最小值	典型值	最大值	单位	条件
模拟输入		•			
满幅差分输入电压	-REFIN/PGA	-	REFIN/PGA	V	-
共模输入电压	GND+0.75	-	VDD-1	V	-
差分输入阻抗	-	250	-	Mohm	-
系统性能					
分辨率	-	24	-	bits	无失码数据
输出速率	2.5	5	2.56K	Hz	-
建立时间	-	-	3	转换周期	全建立
等效输入噪声	-	30	-	nVrms	PGA=128, 10Hz, LDO=3V
有效分辨率	-	20.6	-	bits	PGA=128, 10Hz, LDO=3V
失调误差	-	2.5	10	uV	PGA=64,128
失调误差漂移	-	30	-	nV/°C	PGA=64,128
增益误差	-	±1.5	-	%	PGA=64,128
增益误差漂移	-	16	-	ppm/°C	PGA=64,128
参考电压输入	0.5	LDOOUT	LDOOUT	V	-
温感	-	±3	-	°C	-
带隙基准电压	-	1.24	-	V	VDD=3.3V
LDO 电气特性					
松山中区	-	3.07	-	V	SET_LDO[1:0]=00
输出电压	-	2.66	-	V	SET_LDO[1:0]=10
带载能力	-	20	-	mA	VDD=3.3V
电源电气特性			•		
电源电压	2.5	3.3	4.4	V	-
工 兴工 作由 法	-	1.68	-	mA	PGA=128
正常工作电流	-	0.83	-	mA	PGA=2
休眠模式电流	-	50	-	nA	-

下表为 Sigma-Delta ADC 在不同的输出速率、不同的 PGA 增益条件下的有效分辨率(Effective Resolution)。测试条件:电源电压 3.3V,温度 27度,LDO 设定为 3V 输出,参考电压为 LDO 输出电压,输入共模电压为 0.5倍 LDO 输出电压,输入差分电压为 0V,单颗芯片每种设置下数据总量为 1000。

Effective Resolution=Log2 (2*REFIN /RMS_Noise)

Effortivo	FADC		656K (FADC=1)						
Effective Resolution	OSR	64	128	256	1024	4096	8192	16384	32768
Resolution	ODR (Hz)	2560	1280	640	160	40.0	20.0	10	5
	2 (0000b)	15.0	17.4	18.6	19.8	20.7	21.2	21.7	22.1
	4 (0001b)	15.0	17.2	18.5	19.6	20.5	21.2	21.7	22.1
	8 (0011b)	14.9	17.3	18.4	19.5	20.5	21.0	21.6	22.1
PGA	16 (0100b)	15.1	17.3	18.4	19.5	20.5	21.2	21.6	22.1
Gain	32 (0101b)	15.0	17.1	18.2	19.3	20.3	20.8	21.4	21.8
	64 (0110b)	15.1	17.2	18.1	19.3	20.3	20.8	21.3	21.8
	128 (0111b)	14.9	16.7	17.6	18.7	19.7	20.1	20.6	21.1
	256 (1000b)	14.8	16.0	16.7	17.8	18.8	19.2	19.8	20.3

7.8.5 温度传感器/内部基准电压的特性

 $(T_A = -40 \sim +85^{\circ}C, 1.8V \leq VDD \leq 4.4V, VSS = 0V)$

项目	符号	条件	MIN	TYP	MAX	单位
温度传感器的输出电压	VTMPS25	ADS 寄存器=80H、TA=+25°C	-	1.09	-	V
内部基准电压	VBGR	ADS 寄存器=81H	1.38 ^½	1.45	1.5 ^注	V
温度系数	FVTMPS	-	-	-3.5	-	mV/°C
运行稳定等待时间	tAMP	-	5	-	-	μs

注:

1. 低温规格值由设计保证,量产不测低温条件。

7.8.6 比较器

 $(TA=-40\sim+85^{\circ}C, 1.8V\leq VDD\leq4.4V, Vss=0V)$

(TA= 40 100 0 (1.0 (VDD (4.4 (V 0.5 = 0 V)								
项目	符号		条件		TYP	MAX	单位	
输入偏差电压	V _{IOCMP}		-		±10	±40	mV	
输入电压范围	Ivcmp		-			VDD	V	
内部基准电压偏差	ΔV _{IREF}	CmRVM 寄存	器: 7FH~80H (m = 0, 1)	-	-	±2	LSB	
内印举准电压闸左		其他		-	-	±1	LSB	
响应时间	tCR, tCF	输入振幅±100n	٦V	-	70	150	ns	
运行稳定时间 ^{注1}	tCMP	CMPn=0->1	VDD= 3.3 ~ 4.4V	-	-	1	116	
四月福建时间	CIVIE	CIVIF11=0->1	VDD= 1.8 ~ 3.3V	-	-	3	μs	
基准电压稳定时间	tVR	CVRE=0->1 ^{注 2}		-	-	20	μs	
工作电流	I _{CMPDD}		它被定义为外围功能的运行电流					

注 1: 从比较器动作使能(CMPnEN=0 ->1)到满足 CMP 的各项 DC/AC 式样要求所需要的时间。

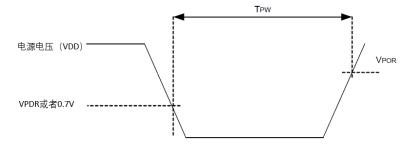
注 2: 内部基准电压发生器使能(通过设置 CVREm 位为 1; m 从 0 到 1)后,经过基准电压稳定时间,才可以使能比较器输出 (CnOE bit = 1; n = 0 to 1)

www.mcu.com.cn 59 / 66 Rev1.13

7.8.7 PGA 电气特性

T_A=25°C, VDD=4.4V, V_{IN+}=0.01V, 除非另有说明。(G 为增益倍数)

符号	参数	条件	最小值	典型值	最大值	单位
VDD	电源电压	-	2.5	-	4.4	V
IQ	静态电流	V _{OUT} =2V	-	0.5	0.7	mA
I_{SD}	关断电流	-	-	10	-	nA
T _A	工作温度	-	-40	25	85	°C
		输入特性				•
		未调零		±2.5		
Vos	输入失调电压	(PGAADJ=20H)	-	±2.5	-	mV
		调零后	-	±0.1	±0.2	
		G=1	0.032			
		G=2	0.016			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	## !	G=4	0.008		(VDD-1.5)/ G	V
V _{CM}	共模输入电压范围	G=8	0.004	-	(400-1.5)/ G	V
		G=16	0.002			
		G=32, 64,128	0.001			
I _B	输入偏置电流	-	-	10	-	рА
I _{OS}	输入失调电流	-	-	10	-	pА
		输出特性	•	•		•
		G=1, 2, 4, 8, 16	-1	-	1	
EG	增益误差	G=32	-2	-	2	%
		G=64,128	-4	-	4	
C _{LOAD}	电容性负载	-	-	10	-	pF
V _{OH}	最大输出电压	-40°C~85°C	-	-	VDD-1.5	V
V _{OL}	最小输出电压	-40°C~85°C	0.032	-	-	V
		频率特性				
BW	带宽	C _{LOAD} =10pF,G=1	-	1.5	-	MHz
PSRR	电源抑制比	VDD=2.5~4.4V,G=16	-	75	-	dB
CMRR	共模抑制比	-40°C~85°C	-	80	-	dB
		瞬态特性	•	•		
SR	摆率	C _{LOAD} =10pF,G=32	-	10	-	V/µs
T _{STB}	稳定时间	-	-	-	2	μs
T _{SH(1)}	采样保持时间	-	-	3	-	μs



7.8.8 POR 电路特性

(TA=-40~+85°C, VSS=0V)

项目	符号	条件	MIN	TYP	MAX	单位
检测电压	VPOR	电源电压上升时		1.60	1.75	V
	VPDR	电源电压下降时	1.37	1.50	1.55	V
最小脉宽 ^{注1}	TPW	-	300	-	-	μs

注1.: 这是在VDD 低于VPDR 时POR 复位所需的时间。另外,在深度睡眠 模式中通过设定时钟运行状态控制寄存器(CSC)的bit0(HIOSTOP)和bit7(MSTOP)停止主系统时钟(fMAIN)的振荡时,是从VDD 低于0.7V到回升超过VPOR为止的POR复位所需的时间。

www.mcu.com.cn 61 / 66 Rev1.13

7.8.9 LVD 电路特性

1) 复位模式和中断模式

 $(TA=-40\sim+85^{\circ}C, VPDR \leq VDD \leq 4.4V, VSS=0V)$

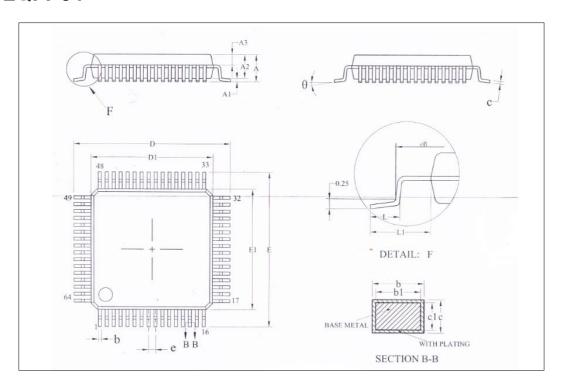
项目	符号	条件	MIN	TYP	MAX	单位
检测电压	\/I\/\P0	电源电压上升时	-	4.06	-	V
	VLVD0	电源电压下降时	-	3.98	-	V
)/I)//D4	电源电压上升时	-	3.75	-	V
	VLVD1	电源电压下降时	-	3.67	-	V
) //) //DO	电源电压上升时	-	3.13	-	V
	VLVD2	电源电压下降时	-	3.06	-	V
) //) //DO	电源电压上升时	-	3.02	-	V
	VLVD3	电源电压下降时	-	2.96	-	V
) //) //D 4	电源电压上升时	-	2.92	-	V
	VLVD4	电源电压下降时	-	2.86	-	V
		电源电压上升时	-	2.81	-	V
	VLVD5	电源电压下降时	-	2.75	-	V
		电源电压上升时	-	2.71	-	V
	VLVD6	电源电压下降时	-	2.65	-	V
		电源电压上升时	-	2.61	-	V
	VLVD7	电源电压下降时	-	2.55	-	V
		电源电压上升时	-	2.50	-	V
	VLVD8	电源电压下降时	-	2.45	-	V
		电源电压上升时	-	2.09	-	V
	VLVD9	电源电压下降时	-	2.04	-	V
) (I) (D) (S)	电源电压上升时	-	1.98	-	V
	VLVD10	电源电压下降时	-	1.94	-	V
		电源电压上升时	-	1.88	-	V
	VLVD11	电源电压下降时	-	1.84	-	V
最小脉宽	tLW	-	300	-	-	μs
检测延迟	-	-	-	-	300	μs

2) 中断和复位模式

(TA=-40 \sim +85 $^{\circ}$ C, VPDR \leq VDD \leq 4.4V, VSS=0V)

项目	符号	条件	MIN.	TYP.	MAX.	单位
	V _{LVDA0}	V _{POC2} 、V _{POC1} 、V _{POC0} =0、0、0,下降复位电		1.63	-	V
	V _L VDA1	LVIS1、LVIS0=1、0 LVIS1、LVIS0=1、0	10压 -	1.77	-	V
	VLVDA1	下降中断电压	-	1.73	-	V
	VLVDA2	上升复位解除日 LVIS1、LVIS0=0、1		1.88	-	V
	VLVDA2	下降中断电压	-	1.84	-	V
	VLVDA3	LVIS1、LVIS0=0、0	3压 -	2.92	-	V
	VLVDAS	下降中断电压	-	2.86	-	V
	V _{LVDB0}	VPOC2、VPOC1、VPOC0=0、0、1,下降复位电		1.84	-	V
	VLVDB1	LVIS1、LVIS0=1、0 LVIS1、LVIS0=1、0	10.15 - 11.15	1.98	-	V
	V L V DB I	下降中断电压	-	1.94	-	V
	V _{LVDB2}	上升复位解除电 LVIS1、LVIS0=0、1	10年 -	2.09	-	V
	*LVDB2	下降中断电压	-	2.04	-	V
	VLVDB3	LVIS1、LVIS0=0、0		3.13	-	V
中断& 复	VLVDB3	下降中断电压	-	3.06	-	V
位模式	V _L VDC0	VPOC2、VPOC1、VPOC0=0、1、0,下降复位电	1压 -	2.45	-	V
	VLVDC1	LVIS1、LVIS0=1、0	3压 -	2.61	-	V
	VLVDC1	下降中断电压	-	2.55	-	V
	VLVDC2	上升复位解除申 LVIS1、LVIS0=0、1	3压 -	2.71	-	V
	VLVDC2	下降中断电压	-	2.65	-	V
	V _{LVDC3}	LVIS1、LVIS0=0、0		3.75	-	V
	*LVDC3	下降中断电压	-	3.67	-	V
	VLVDD0	VPOC2、VPOC1、VPOC0=0、1、1,下降复位电		2.75	-	V
	V _L VDD1	LVIS1、LVIS0=1、0 LVIS1、LVIS0=1、0	1 -	2.92	-	V
	*LVDD1	下降中断电压	-	2.86	-	V
	VLVDD2	LVIS1、LVIS0=0、1		3.02	-	V
	*LVDDZ	下降中断电压	-	2.96	-	V
	VLVDD3	LVIS1、LVIS0=0、0	3压 -	4.06	-	V
	*LVDD3	下降中断电压	-	3.98	-	V

7.8.10 电源电压的上升斜率特性


 $(TA=-40\sim+85^{\circ}C, Vss=0V)$

项目	符号	条件	MIN	TYP	MAX	单位
电源电压的上升斜率	SVDD	-	-	-	54	V/ms

8 封装信息

8.1 LQFP64

Symbol —	Millimeter				
	Min	Nom	Max		
А	-	-	1.60		
A1	0.05	-	0.15		
A2	1.35	1.40	1.45		
A3	0.59	0.64	0.69		
b	0.16	-	0.24		
b1	0.15	0.18	0.21		
С	0.13	-	0.17		
c1	0.12	0.13	0.14		
D	8.80	9.00	9.20		
D1	6.90	7.00	7.10		
Е	8.80	9.00	9.20		
E1	6.90	7.00	7.10		
eB	8.10	-	8.25		
е	0.40BSC				
L	0.45	-	0.75		
L1	1.00REF				
θ	0	-	7°		

9 版本历史

版本号	时间	修改内容	
V1.00	2021年4月	初始版本	
V1.01	2021年9月	修改供电电压范围,Sigma-Delta ADC 相关勘误	
V1.11	2021年11月	修改温度电压等参数	
V1.12	2021年12月	增加引脚说明和删除不需要的温度参数	
V1.13	2022年1月	修改了一些描述	