

BAT32A6700 数据手册

基于 ARM® Cortex®-M0+的超低功耗 32 位微控制器

内置 128K 字节 Flash, 集成 LDO, LIN 收发器,丰富的模拟功能, 安全机能, 定时器及各种通讯接口

V1.0.1

请注意以下有关CMS知识产权政策

*中微半导体(深圳)股份有限公司(以下简称本公司)已申请了专利,享有绝对的合法权益。与本公司MCU或其他产品有关的专利权并未被同意授权使用,任何经由不当手段侵害本公司专利权的公司、组织或个人,本公司将采取一切可能的法律行动,遏止侵权者不当的侵权行为,并追讨本公司因侵权行为所受的损失、或侵权者所得的不法利益。

*中微半导体(深圳)股份有限公司的名称和标识都是本公司的注册商标。

*本公司保留对规格书中产品在可靠性、功能和设计方面的改进作进一步说明的权利。然而本公司对于规格内容的使用不负责任。文中提到的应用其目的仅仅是用来做说明,本公司不保证和不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。本公司的产品不授权适用于救生、维生器件或系统中作为关键器件。本公司拥有不事先通知而修改产品的权利,对于最新的信息,请参考官方网站 www.mcu.com.cn。

功能

● 超低功耗工作环境:

- ▶ 电源电压范围: 5.5V到28V
- ▶ 温度范围: -40°C到125°C
- ▶ 低功耗模式:睡眠模式,深度睡眠模式
- ➤ 运行功耗: 120uA/MHz@48MHz
- ➤ 深度睡眠模式下功耗: 42uA
- ➤ 深度睡眠模式+32.768K+RTC工作: 45uA

内核:

- ➤ ARM®32-bitCortex®-M0+ CPU (帯MPU存储器保护单元)
- ▶ 工作频率: 32KHz~48MHz

● 存储器:

- ▶ 128KB Flash存储器,程序与数据存储共享
- ▶ 1.5KB 专用数据Flash存储器
- ▶ 12KB SRAM存储器,附带奇偶校验

● 电源和复位管理:

- ▶ 内置上电复位(POR)电路
- ▶ 内置电压检测(LVD)电路(门限电压可设)

● 时钟管理:

- ▶ 内置高速发振器,精度(±1%)。可提供 1MHz~48MHz系统时钟。可提供 1MHz~64MHz外围模块动作时钟
- ▶ 内置15KHz低速振荡器
- ▶ 支持1MHz~20MHz外部晶体振荡器
- ▶ 支持32.768KHz外部晶体振荡器

● 乘法器/除法器模块:

- ▶ 乘法器:支持单周期32bit乘法运算
- ▶ 除法器: 支持32bit有符号整数除法运算,仅 需4或8个CPU时钟周期完成一次运算

● 增强型DMA控制器:

- ▶ 中断触发启动。
- 传送模式可选(正常传送模式,重复传送模式,块传送模式以及链传送模式)
- ▶ 传送源/目的领域为全地址空间范围可选

● 联动控制器:

- ▶ 能将事件信号链接到一起,实现外围功能的 联动
- ▶ 事件输入22种,事件触发10种

● 丰富的模拟外围:

- ▶ 12位精度ADC转换器,转换速率1.06Msps, 外部模拟通道数15个,带温度传感器,支持 单通道转换模式和多通道扫描转换模式。转 换范围:0到正参考电压
- ➤ 8位精度D/A转换器, 2通道模拟输出,实时输出功能,输出电压范围0~VDD

- ▶ 比较器(CMP),内置两通道比较器,输入 源可选,基准电压可选择外部基准电压或内 部基准电压
- ▶ 可编程增益放大器(PGA),内置两通道 PGA,可设置4/8/10/12/14/16/32倍增益,带 外部GND引脚

● 输入/输出端口:

- ▶ I/O端口: 41个
- ▶ 能进行N沟道漏极开路、TTL输入缓冲、内部 上拉的切换
- 内置按键中断检出功能
- ▶ 内置时钟输出/蜂鸣器输出的控制电路

● 串行两线调试器(SWD)

● 丰富的定时器:

- ➤ 16 位定时器: 9通道(带有通用PWM和电机 专用PWM功能)
- ▶ 15 位间隔定时器: 1个
- ➢ 实时时钟(RTC): 1个(具有万年历、闹钟功能,并且支持大范围的时钟校正)
- ▶ 看门狗定时器(WWDT): 1个
- ➢ SysTick定时器

● 丰富灵活的接口:

- ▶ 串行通讯单元 2 个: 串行通讯单元 0 可以自由配置成 2 通道标准 UART 或 4 通道 3 线 SPI 或 4 通道简易 I²C; 串行通讯单元 1 可以自由配置成 1 通道标准 UART 或 2 通道 3 线 SPI 或 2 通道简易 I²C; (其中,单元 0 的 UART 支持 LIN-Bus 通讯,SPI00 通道支持 4 线 SPI 通讯)
- ▶ 标准I²C: 1通道
- ➤ IrDA: 1通道
- ▶ CAN: 1诵道
- 集成LIN收发器,符合LIN 2.x/ SAE J2602协议规范
- 集成5V LDO,可为内部MCU及外部器件提供电源,输入电压5.5~28V

● 安全功能:

- ➢ 符合IEC/UL 60730相关标准
- 异常存储空间访问报错
- ▶ 支持RAM奇偶校验
- ▶ 支持硬件CRC校验
- ▶ 支持重要SFR保护, 防止误操作
- ➤ 128位唯一ID号
- Debug 模式下的 Flash 二级保护(Level1: 只能进行 flash 全领域擦除,不能读写; Level2: 仿真器连接无效,不可对 flash 操作)

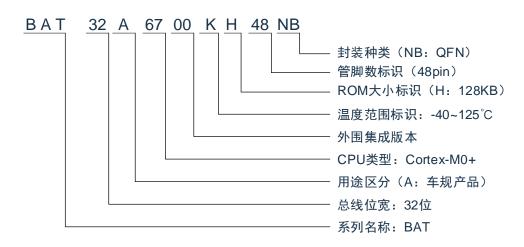
封装:

> QFN48

1 概述

1.1 简介

BAT32A6700系列符合AEC-Q100 Grade1 汽车产品标准,-40~125°C工作环境温度,支持48Pin的QFN封装。本产品采用高性能的ARM®Cortex®-M0+内核,最高可工作于48MHz,采用高速的嵌入式闪存(SRAM最大12KB,程序/数据闪存最大128KB)。本产品集成I²C、SPI、UART、LIN、CAN总线等多种标准接口,集成12bitA/D转换器、温度传感器、8bitD/A转换器、比较器,可编程增益放大器。其中12bitA/D转换器可用于采集外部传感器信号,降低系统设计成本。8bit的D/A转换器可以用于音频播放或电源控制。芯片内集成的温度传感器则可实现对外部环境温度实时监控。芯片内部集成的比较器,可用于运转马达的控制反馈或电池监测等应用。集成多种高级定时器模块,1通道SysTick定时器、17通道16bit定时器、1通道15bit间隔定时器、看门狗定时器及实时时钟等功能,支持通用PWM及电机专用PWM功能。


BAT32A6700还具有出色的低功耗性能,支持睡眠和深度睡眠两种低功耗模式,设计灵活。其运行功耗为120uA/MHz@48MHz,在深度睡眠模式下功耗仅42uA。同时,由于集成事件联动控制器,可实现硬件模块之间的直接连接,无需CPU的干预,比使用中断响应速度更快。

BAT32A6700 集成 LDO, LIN 收发器,并以优秀的可靠性、丰富的集成外围功能以及出色的低功耗性能,从而更专注于汽车电子相关的开关、门、窗、灯、传感器、电机等应用。

www.mcu.com.cn 3/71 Rev.1.0.1

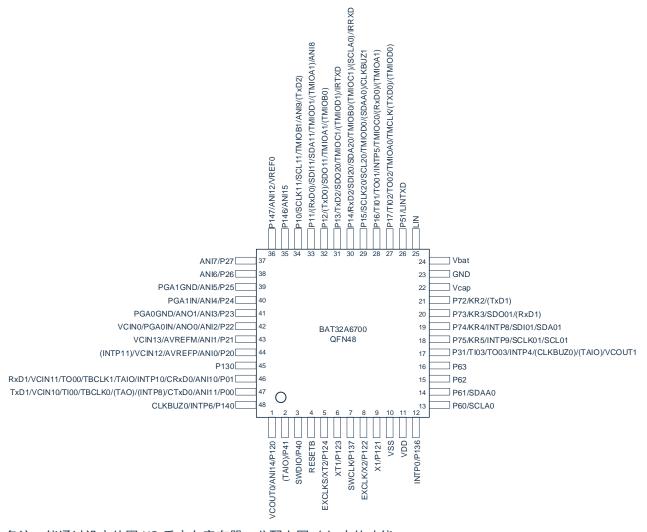
1.2 产品型号一览表

BAT32A6700 的产品一览表:

产品型号	Flash存储器	专用数据 Flash存储器	SRAM	封装
				48引脚塑封 QFN
BAT32A6700KH48NB	128KB	1.5KB	12KB	(6x6mm, 0.4mm间距)

www.mcu.com.cn 4 / 71 Rev.1.0.1

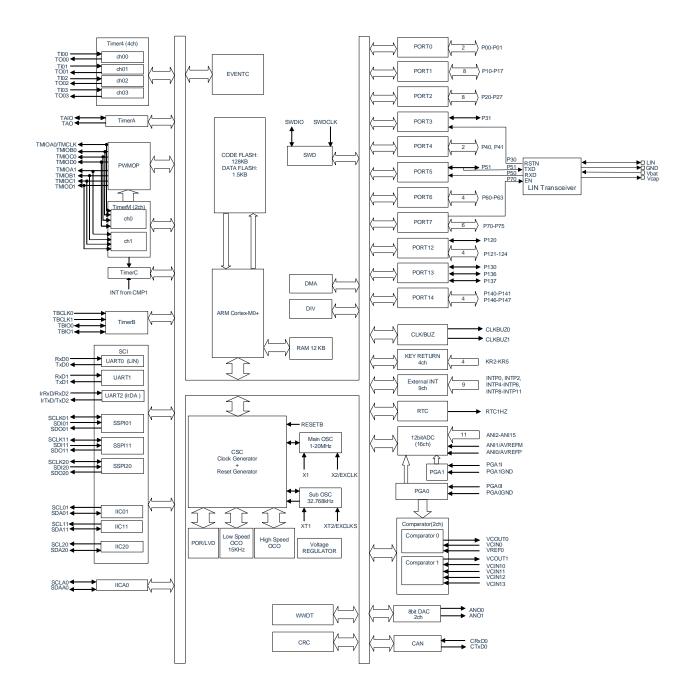
BAT32A6700 的产品选型表:


Part No.	内核	主频(MHz)	内置LDO输入(V)	MCU工作电压(V)	Code Flash (KB)	SRAM (KB)	Data Flash (KB)	DMA	GPIO	12bit ADC	8bit DAC	比较器 CMP	放大器 PGA	通用定时器(16bit)	实时时钟(RTC)	看门狗定时器(WDT)	异步串行总线(UART)	同步串行总线(SPI)	IIC总线	IrDA总线	LIN总线(集成收发器)	CAN总线	硬件乘法器	硬件除法器	疝紫(package)
BAT32A670 0KH48NB	M0+	48	5.5~28	5.0	128	12	1.5	36	41	15+ 4	2	2	2	9	1	1	3	3	1+3	1	1	1	Υ	Υ	QFN 48

1.3 引脚图 (Top View)

1.3.1 BAT32A6700KH48NB

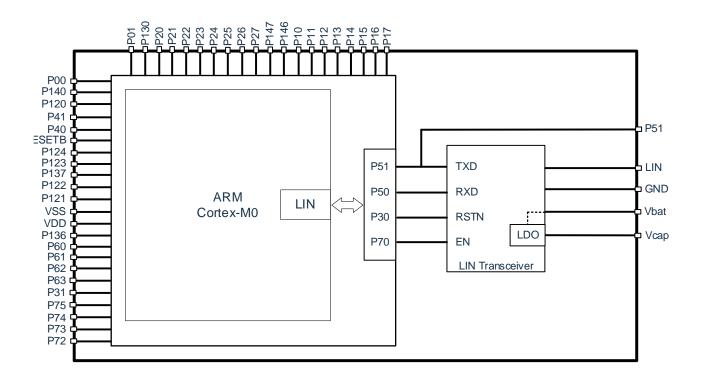
48 引脚塑封QFN(6x6mm、0.4mm间距)



备注:能通过设定外围 I/O 重定向寄存器,分配上图()内的功能。

www.mcu.com.cn 6 / 71 Rev.1.0.1

2 产品结构图


3 存储器映射

FFFF_FFFFH	保留
E00F_FFFFH	
_	Cortex-M0+ 专用外设资源区
E000_0000H	
	保留
4005_FFFFH	
	AL NEW YEE
	外设资源区
4000_0000H	
	保留
2000_2FFFH	
2000_0000H	SRAM(最大12KB)
2000_000011	
	保留
0050_05FFH	数据闪存 1.5KB
0050_0000H	
	保留
0001_FFFFH	
	主闪存区 (最大128KB)
0000_0000H	

www.mcu.com.cn 8 / 71 Rev.1.0.1

4 系统框图

www.mcu.com.cn 9 / 71 Rev.1.0.1

5 引脚功能

5.1 端口功能

本产品所有端口按类型分为 5 种,分别是类型 1~类型 6,对应情况如下:

类型 1: 双向 I/O 功能。

类型 2: NOD 功能,对应管脚 P60-P63。

类型 3: 只有输入功能,如时钟,对应管脚 P121-P124。

类型 4: 只有输出功能,对应管脚 P130。

类型 5: RESET 功能,对应管脚 RESETB。

类型 6: 其他功能,如 LIN、VSS/GND、VDD、Vcap。

各类型引脚框图详情见 4.3 端口类型。

5.1.1 48pin 产品引脚功能说明

功能名称	端口 类型	输入/ 输出	解除复位后	复用功能	功能			
P00				ANI11/TxD1/VCIN10/TI00/TBCLK0/ (TAO) / (INTP8) /CTxD0	端口0 2位输入/输出端口,能以位为单位指定 为输入或者输出。输入端口能通过软件			
P01		输入/输出	模拟功能	ANI10/RxD1/VCIN11/TO00/TBCL K1 /TAIO/INTP10/CRxD0	的设定,使用内部上拉电阻。 P01的输入能设定为TTL输入缓冲。P0 的输出能设定为N沟道漏极开路输出(VDD耐压)。 P00和P01能设定为模拟输入。			
P10				SCLK11/SCL11/TMIOB1/ANI9/ (TxD2)				
P11			模拟功能	(RxD0) /SDI11/SDA11/TMIOD1/ (TMIOA1) /ANI8	端口1			
P12		输入/输出		(TxD0) /SDO11/TMIOA1/ (TMIOB0)	8位输入/输出端口,能以位为单位指定			
P13				TxD2/SDO20/TMIOC1/ (TMIOD1) /IrTxD	为输入或者输出。输入端口能通过软件的设定,使用内部上拉电阻。			
P14	类型1			RxD2/SDI20/SDA20/ TMIOB0/ (TMIOC1) / (SCLA0) /IrRxD	P10和P14~P17的输入能设定为TTL 输入缓冲。			
P15			输入端口	SCLK20/SCL20/TMIOD0/ (SDAA0) /CLKBUZ1	P10、P11、P13~P15和P17的输出能设定为N沟道漏极开路输出(VDD耐压)			
P16				TI01/TO01/INTP5/TMIOC0/ (RxD0) / (TMIOA1)	。 P10和P11能设定为模拟输入。			
P17				TI02/TO02/TMIOA0/TMCLK0 /TxD0) / (TMIOD0)				
P20				ANIO/AVREFP/VCIN12/ (INTP11)				
P21				ANI1/AVREFM/VCIN13				
P22		输入/输出		ANI2/ANO0/PGA0IN/VCIN0	端口2			
P23			模拟功能	ANI3/ANO1/PGA0GND	8位输入/输出端口,能以位为单位指定			
P24			「大」のかり形	ANI4/PGA1IN	为输入或者输出。能设定为模拟			
P25				ANI5/PGA1GND	输入。			
P26				ANI6				
P27				ANI7				

www.mcu.com.cn 10 / 71 Rev.1.0.1

			T	T	
P31		输入/ 输出	输入端口	TI03/TO03/INTP4/ (CLKBUZ0) / (TAIO) /VCOUT1	端口3 输入/输出端口,能以位为单位指定为输 入或者输出。输入端口能通过软件的设 定,使用内部上拉电阻。
P40				SWDIO	端口4
P41	-	输入/ 输出	输入端口	(TAIO)	输入/输出端口,能以位为单位指定为输入或者输出。输入端口能通过软件的设定,使用内部上拉电阻。
P51	类型1	输入/输出	输入端口	LINTXD	端口5 使用LINRXD功能时,P51就不能作为别的IO功能,直接浮空如不使用LINRXD功能,可将P51做I/O使用,配置输入时,可使能内部上拉电阻;配置输出时,设定为N沟道漏极开路输出:(VDD耐压)。
P60				SCLA0	端口6
P61	类型2	输入/	输入端口	SDAA0	4位输入/输出端口,能以位为单位指定
P62	大王と	输出	4807~200日	_	为输入或者输出。P60~P63的输出为N
P63				_	沟道漏极开路输出(6V 耐压)。
P72				KR2/ (TxD1)	端口7
P73		输入/输出	输入端口	KR3/SDO01/ (RxD1)	——6位输入/输出端口,能以位为单位指定 为输入或者输出。输入端口能通过软件
P74	- 24¢ ππ 4			KR4/INTP8/SDI01/SDA01	的设定,使用内部上拉电阻。P74的输
P75	类型1			KR5/INTP9/SCLK01/SCL01	出能设定为N沟道漏极开路输出(VDD 耐压)。
P120		输入 / 输出	模拟功能	ANI14/VCOUT0	端口12
P121			输入端口	X1	1位输入/输出端口和4位输入专用端口。
P122	类型3	输入		X2/EXCLK	一 只有P120带有输出功能。只有P120的 输入端口才能通过软件的设定,使用内
P123	关至3	和八	和八垧口	XT1	一一部人编句才能通过软件的设定,使用的 一一部上拉电阻。P120能设定为模拟输入。
P124				XT2/EXCLKS	
P130	类型4	输出	输出端口	_	端口13
P136		te > /		INTP0	1位输出专用端口和2位输入/输出端口, P137能以位为单位指定为输入或者输出
P137		输入/输出	输入端口	SWCLK	。輸入端口能通过软件的设定,使用内部上拉电阻。
P140	类型1		输入端口	CLKBUZ0/INTP6	端口14
P146	1	输入/		ANI15	3位输入/输出端口,能以位为单位指定
P147		输出	模拟功能	ANI12/VREF0	一一 为输入或者输出。输入端口能通过软件 的设定,使用内部上拉电阻。 P146、P147能设定为模拟输入。
RESETB	类型5	输入	_	_	外部复位的输入专用引脚 当不使用外部复位时,必须直接或者通 过电阻连接到VDD。
LIN		输入/ 输出	LIN 通讯	_	LIN总线输入/输出端口
Vcap	类型6	电源	_		LDO输出5V,可为内部MCU及外部器件 提供电源,外接0.1uF+10uF去耦电容
VDD		电源	_	_	MCU电源输入
Vbat]	电源	_	_	电池电源电压
GND/VSS		地	_	_	地

备注:

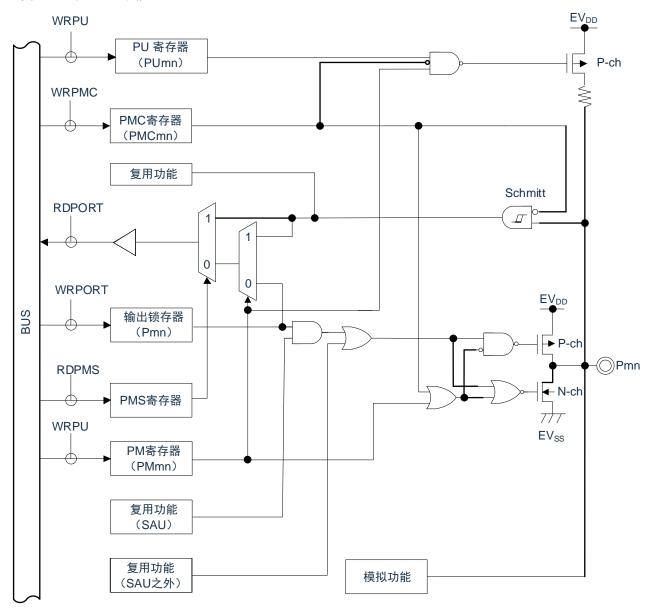
- 1. 通过端口模式控制寄存器 x(PMCx)将各引脚设定为数字或者模拟(能以位为单位进行设定)。
- 2. 复用功能说明参见"4.2端口复用功能"。
- 3. 能通过设定外围I/O 重定向寄存器,分配上表()内的功能。

5.2 端口复用功能

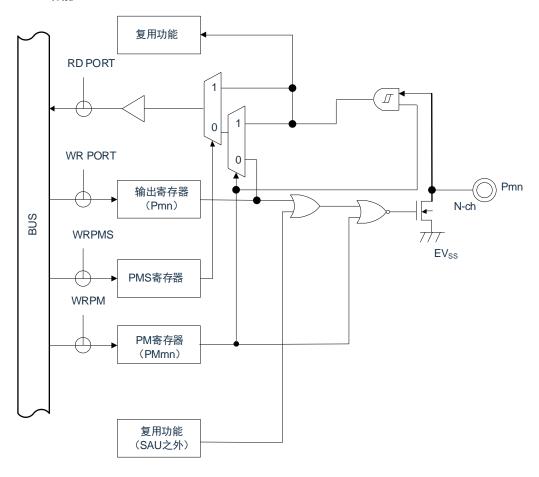
(1/2)

功能名称	输入/输出	功能
ANI0 ~ ANI15	输入	A/D转换器的模拟输入
ANO0、ANO1	输出	D/A转换器的输出
INTP0 ~ INTP11	输入	外部中断请求输入 有效边沿的指定:上升沿、下降沿、上升和下降的双边沿
VCIN0	输入	比较器0的模拟电压输入
VCIN10,VCIN11,VCIN12, VCIN13	输入	比较器1的模拟电压/基准电压输入
VREF0	输入	比较器0的基准电压输入
VCOUT0、VCOUT1	输出	比较器输出
PGA0IN, PGA1IN	输入	PGA输入
PGA0GND, PGA1GND	输入	PGA参考输入
KR0 ~ KR7	输入	键中断输入
CLKBUZ0、CLKBUZ1	输出	时钟输出/蜂鸣器输出
RTC1HZ	输出	实时时钟的校正时钟(1Hz)输出
RESETB	输入	低电平有效的系统复位输入,当不使用外部复位时,必须直接或者通过电 阻连接VDD。
CRxD0	输入	CAN的串行数据输入
CTxD0	输出	CAN的串行数据输出
IrRxD	输入	IrDA的串行数据输入
IrTxD	输出	IrDA的串行数据输出
RxD0 ~ RxD2	输入	串行接口UART0、UART1、UART2的串行数据输入
TxD0 ~ TxD2	输出	串行接口UART0、UART1、UART2的串行数据输出
SCL01、SCL11、SCL20	输出	串行接口IIC01、IIC11、IIC20 的串行时钟输出
SDA01、SDA11、SDA20	输入/输出	串行接口IIC01、IIC11、IIC20的串行数据输入 / 输出
SCLK01、SCLK11、 SCLK20	输入/输出	串行接口SSPI01、 SSPI11、SSPI20的串行时钟输入/输出
SDI01, SDI11, SDI20	输入	串行接口SSPI01、 SSPI11、 SSPI20的串行数据输入

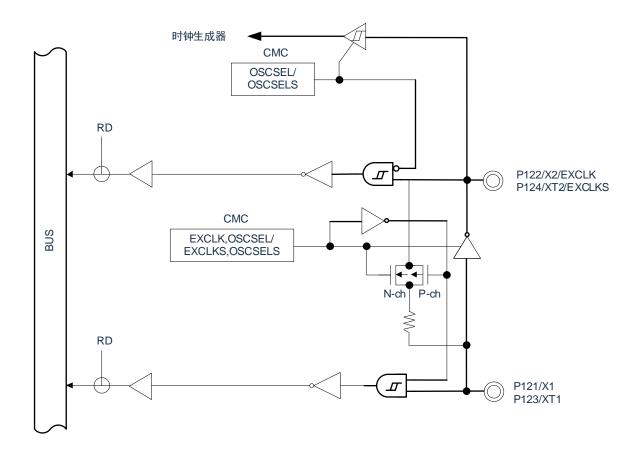
(2/2)


功能名称	输入/输出	功能
SDO01、SDO11、SDO20	输出	SSPI01、SSPI11、SSPI20的串行数据输出
SCLA0	输入/输出	串行接口IICA0的时钟输入/输出
SDAA0	输入/输出	串行接口IICA0的串行数据输入/输出
TI00 ~TI03	输入	16位定时器Timer4的外部计数时钟/捕捉触发输入
TO00 ~TO03	输出	16位定时器Timer4的定时器输出
TAIO	输入/输出	定时器TimerA的输入/输出
TAO	输出	定时器TimerA的输出
TMCLK	输入	定时器TimerM的外部时钟输入
TMIOA0、TMIOB0、TMIOC0、TMIOD0、TMIOA1、TMIOB1、TMIOC1、TMIOD1	输入/输出	定时器TimerM的输入/输出
TBIO0	输入/输出	定时器TimerB的输入/输出
TBCLK0、TBCLK1	输入	定时器TimerB的外部时钟输入
X1、X2	_	连接用于主系统时钟的谐振器。
EXCLK	输入	主系统时钟的外部时钟输入
XT1、XT2	_	连接用于副系统时钟的谐振器。
EXCLKS	输入	副系统时钟的外部时钟输入
AV _{REFP}	输入	A/D转换器的正(+)基准电压输入
AVREFM	输入	A/D转换器的负(-)基准电压输入
SWDIO	输入/输出	SWD数据接口
SWCLK	输入	SWD时钟接口
LIN	输入/输出	LIN总线输入/输出端口
Vss	-	电源地
GND	-	电源地
Vbat	-	电池电源电压
Vcap	-	LDO输出 -可为内部MCU及外部器件提供电源,需外接0.1uF+10uF 去耦电容
VDD	-	MCU电源

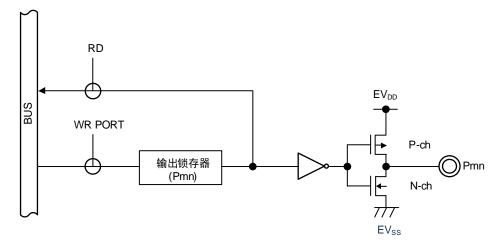
备注:作为噪声和锁定的对策,必须在 VDD-V_{SS},Vcap-V_{SS} 之间以最短的距离并且用较粗的布线连接旁路电容器(0.1uF 左右)。


5.3 端口类型

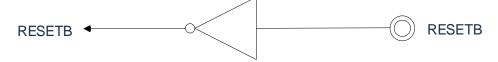
类型 1: 双向 I/O 功能



类型 2: NOD 功能



类型 3: 只有输入功能



类型 4: 只有输出功能

类型 5: RESET 功能

www.mcu.com.cn 18 / 71 Rev.1.0.1

6 功能概要

6.1 ARM® Cortex®-M0+内核

ARM 的 Cortex-M0+处理器是 ARM 处理器中针对嵌入式系统的新一代产品。它提供了一种低成本的平台旨在满足少引脚数和低功耗单片机的需求,同时提供出色的计算性能和先进的系统响应中断。

Cortex-M0+处理器提供卓越的代码效率,提供 ARM 内核的高性能预期,区别于同等内存大小的 8 位和 16 位器件。Cortex-M0+处理器具有 32 根地址线,存储空间多达 4G。

本产品搭载的 Cortex-M0+处理器集成了 MPU 存储器保护单元:提供硬件方式管理和保护内存,控制访问权限。

BAT32A6700 采用嵌入式的 ARM 内核, 因此与所有的 ARM 工具和软件兼容。

6.2 存储器

6.2.1 闪存 Flash

BAT32A6700内置了可进行编程、擦除和重写的闪存。具有如下功能:

- ▶ 程序和数据共享 128K 存储空间。
- ➤ 1.5KB专用数据Flash存储器。
- ▶ 支持页擦除,每页大小是 512byte。
- ▶ 支持 byte/half-word/word(32bit)编程。

6.2.2 **SRAM**

BAT32A6700 内置 12K 字节的嵌入式 SRAM。

6.3 增强型 DMA 控制器

内置增强型 DMA(Direct Memory Access)控制器,能够实现不使用 CPU 而在存储器之间进行数据传送的功能。

- ▶ 支持通过外围功能中断启动 DMA, 能实现通过通信、定时器和 A/D 进行的实时控制。
- ▶ 传送源/目的领域为全地址空间范围可选(flash 领域作为目的地址时,需要预设 flash 为编程模式)。
- ▶ 支持4种传送模式(正常传送模式,重复传送模式,块传送模式以及链传送模式)。

www.mcu.com.cn 19 / 71 Rev.1.0.1

6.4 LIN 收发器

BAT32A6700是一款内部集成LDO的本地互联网络(LIN)物理层收发器的SoC产品,其内部LIN收发器可为ECU(Electronic Control Unit)微控制器或相关外设提供稳定的5V电源,该LIN收发器符合LIN 2.0、LIN2.1、LIN 2.2、LIN 2.2A、ISO 17987-4:2016 (12V) 和SAE J2602 标准。主要适用于使用1kbps至20kbps传输速率的车载网络。该收发器的LIN总线输出引脚具有内部上拉电阻,具有总线输出波形整形功能以减少电磁辐射(EME)。该收发器为全双工通信,以TXD引脚作为输入端,将微控制器的低压信号发送至LIN 总线,同时LIN引脚接收总线上的数据流,并由接收器的输出引脚RXD将数据传回微控制器或传送到其它微控制器。

集成的内部 LIN 收发器可在 5.5V~28V 工作电压范围内,支持 12V 应用。该收发器在休眠模式下可实现极低电流消耗,发生故障时可快速地将功耗降至最低,并且可通过 LIN 总线进行远程唤醒,或通过 EN 引脚上的消息将器件置于正常工作模式。同时提供一个 5V 稳压源的上电与掉电检测输出引脚 RSTN,以便于微控制器对稳压源的供电情况进行监测。

6.5 联动控制器

联动控制器将各外围功能输出的事件与外围功能触发源之间相互链接。从而实现不使用 CPU 而直接进行外围功能之间的协作运行。

联动控制器有以下功能:

- 》 能将事件信号链接到一起,实现外围功能的联动。
- 事件输入 22 种,事件触发 10 种。

6.6 时钟发生和启动

时钟发生电路是产生给CPU和外围硬件提供时钟的电路。有以下3种系统时钟和时钟振荡电路。

6.6.1 主系统时钟

- ➤ X1振荡电路:能通过给引脚(X1和X2)连接谐振器产生1~20MHz的时钟振荡,并且能通过执行深度 睡眠指令或者设定MSTOP使振荡停止。
- ▶ 高速内部振荡器(高速OCO):能通过选项字节选择频率进行振荡。在解除复位后,CPU默认以此高速内部振荡器时钟开始运行。能通过执行深度睡眠指令或者设定HIOSTOP位使振荡停止。能通过高速内部振荡器的频率选择寄存器更改选项字节设定的频率。最高频率为64Mhz,精度±1.0%
- ▶ 由引脚(X2)输入外部时钟: (1~20MHz),并且能通过执行深度睡眠 指令或者设定MSTOP位将外部主系统时钟的输入置为无效。

www.mcu.com.cn 20 / 71 Rev.1.0.1

6.6.2 副系统时钟

- ➤ XT1 振荡电路:能通过给引脚(XT1 和 XT2)连接 32.768KHz 的谐振器产生 32.768KHz 的时钟振荡,并且能通过设定 XTSTOP 位使振荡停止。
- ▶ 由引脚(XT2)输入外部时钟: 32.768KHz, 并且能通过设定 XTSTOP 位将外部时钟的输入置为无效。

6.6.3 低速内部振荡器时钟

低速内部振荡器(低速 OCO):产生 15KHz(典型值)的时钟振荡。不能将低速内部振荡器时钟用作 CPU 时钟。只有以下外围硬件能通过低速内部振荡器时钟运行:

- ▶ 看门狗定时器(WWDT)。
- ➢ 实时时钟(RTC)。
- ▶ 15位间隔定时器。
- ▶ 定时器 TimerA。

www.mcu.com.cn 21 / 71 Rev.1.0.1

6.7 电源管理

6.7.1 供电方式

Vbat: 电池电源电压, 电压范围5.5V~28V, 支持12V系统;

Vcap: LDO输出电压5V, 电压范围4.9V~5.1V, 必须外接0.1uF及10uF滤波电容。

VDD: MCU 输入电压,电压范围 2.0V~5.5V.(实际应用中将 Vcap 连接到 VDD,不用额外再给 MCU 供电)

6.7.2 上电复位

上电复位电路(POR)有以下功能。

- ➤ 在接通电源时产生内部复位信号。如果MCU电压(VDD)大于检测电压(V_{POR}),就解除复位。但 是,在达到工作电压范围前,必须通过电压检测电路或者外部复位保持复位状态。
- ➢ 将MCU电压(VDD)和检测电压(VPDR)进行比较,当VDD<VPDR时,产生内部复位信号。但是,在电源下降时,必须在小于工作电压范围前,转移到深度睡眠模式,或者通过电压检测电路或外部复位设定为复位状态。如果要重新开始运行,必须确认电源电压已恢复到工作电压范围内。</p>

6.7.3 电压检测

电压检测电路通过选项字节设定运行模式和检测电压(VLVDH、VLVDL、VLVD)。电压检测(LVD)电路有以下功能:

- ▶ 将MCU电压(VDD)和检测电压(VLVDH、VLVDL、VLVD)进行比较,产生内部复位或者中断请求信号。
- ▶ MCU电压的检测电压(VLVDH、VLVDL、VLVD)能通过选项字节选择检测电平。
- 能在深度睡眠模式中运行。
- 当电源上升时,在达到工作电压范围前,必须通过电压检测电路或者外部复位保持复位状态。当电源下降时,必须在小于工作电压范围前,转移到深度睡眠模式,或者通过电压检测电路或外部复位设定为复位状态。
- 工作电压范围根据用户选项字节的设定而变。

www.mcu.com.cn 22 / 71 Rev.1.0.1

6.8 低功耗模式

BAT32A6700 支持两种低功耗模式以便在功耗低,启动时间短,可用的唤醒源之间实现最佳的折中:

- ▶ 睡眠模式:通过执行睡眠指令进入睡眠模式。睡眠模式是停止 CPU 运行时钟的模式。在设定睡眠模式前,如果高速系统时钟振荡电路、高速内部振荡器或者副系统时钟振荡电路正在振荡,各时钟就继续振荡。虽然此模式无法让工作电流降到深度睡眠模式的程度,但是在想要通过中断请求立即重新开始处理或者想要频繁地进行间歇运行时是一种有效的模式。
- ➢ 深度睡眠模式:通过执行深度睡眠指令进入深度睡眠模式。深度睡眠模式是停止高速系统时钟振荡电路和高速内部振荡器的振荡并且停止整个系统的模式。能大幅度地降低芯片的工作电流。因为深度睡眠模式能通过中断请求来解除,所以也能进行间歇运行。但是,在 X1 时钟的情况下,因为在解除深度睡眠模式时需要确保振荡稳定的等待时间,所以如果一定要通过中断请求立即开始处理,就必须选择睡眠模式。

在任何一种模式中,寄存器、标志和数据存储器全部保持设定为待机模式前的内容,并且还保持输入/输出端口的输出锁存器和输出缓冲器的状态。

6.9 复位功能

以下7种方法产生复位信号。

- 1) 通过RESETB引脚输入外部复位。
- 2) 通过看门狗定时器的程序失控检测产生内部复位。
- 3) 通过上电复位(POR)电路的电源电压和检测电压的比较产生内部复位。
- 通过电压检测电路(LVD)的电源电压和检测电压的比较产生内部复位。
- 5) 因RAM奇偶校验错误而产生内部复位。
- 6) 因存取非法存储器而产生内部复位。
- 7) 软件复位

内部复位和外部复位相同,在产生复位信号后,从写在地址0000H和0001H中的地址开始执行程序。

www.mcu.com.cn 23 / 71 Rev.1.0.1

6.10 中断功能

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多32个中断请求(IRQ)输入,以及1个不可屏蔽中断(NMI)输入,另外,处理器还支持多个内部异常。

本产品对32个可屏蔽中断请求(IRQ)和1个不可屏蔽中断(NMI)进行了扩展,最多能支持64个可屏蔽中断源,以及一个不可屏蔽中断源。中断源的实际个数因产品而不同。

		48引脚
→ R 恭 + Wr	外部	11
可屏蔽中断	内部	29

6.11 实时时钟(RTC)

实时时钟(RTC)有以下功能。

- ▶ 具有年、月、星期、日、小时、分钟和秒的计数器。
- ▶ 固定周期中断功能(周期: 0.5秒、1秒、1分钟、1小时、1日、1个月)。
- ▶ 闹钟中断功能(闹钟:星期、小时、分钟)。
- ▶ 1Hz的引脚输出功能。
- ▶ 支持副系统时钟或者主系统时钟的分频作为RTC的运行时钟。
- > 实时时钟中断信号(INTRTC)能用作深度睡眠模式的唤醒。
- 支持大范围的时钟校正功能。

只有在选择副系统时钟(32.768KHz)或者主系统时钟的分频作为 RTC 的运行时钟的情况下,才能进行年、月、星期、日、小时、分钟和秒的计数。当选择低速内部振荡器时钟(15KHz)时,只能使用固定周期中断功能。

6.12 看门狗定时器

1 通道 WWDT, 17bit 看门狗定时器通过选项字节设定计数运行。看门狗定时器以低速内部振荡器时钟 (15KHz)运行。看门狗定时器用于检测程序失控。在检测到程序失控时,产生内部复位信号。

下述情况判断为程序失控:

- > 当看门狗定时器计数器发生上溢时
- ▶ 当对看门狗定时器的允许寄存器(WDTE)执行1位操作指令时
- ▶ 当给WDTE寄存器写"ACH"以外的数据时
- ▶ 在窗口关闭期间给 WDTE 寄存器写数据时

www.mcu.com.cn 24 / 71 Rev.1.0.1

6.13 SysTick 定时器

这个定时器是实时操作系统专用的,但也可以作为一个标准的递减计数器使用。

它的特点为: 24 位递减计数器自装填能力计数器达到 0 时,有可屏蔽的系统中断的产生。

6.14 定时器 Timer4

本产品内置含有 4 个 16 位定时器的定时器单元 Timer4。每个 16 位定时器称为一"通道",既能分别用作独立的定时器, 也能组合多个通道用作高级的定时器功能。

有关各功能的详细内容。请参照下表。

独立通道运行功能	多通道联动运行功能
 间隔定时器 方波输出 外部事件计数器 分频器 输入脉冲间隔的测量 输入信号的高/低电平宽度的测量 延迟计数器 	 单触发脉冲输出 PWM 输出 多重 PWM 输出

6.14.1 独立通道运行功能

独立通道运行功能是能不受其他通道运行模式的影响而独立使用任意通道的功能。独立通道运行功能用作以下模式:

- 1) 间隔定时器:能用作以固定间隔产生中断(INTTM)的基准定时器。
- 2) 方波输出:每当产生 INTTM 中断时,就触发翻转,从定时器输出引脚(TO)输出 50%占空比的方波。
- 3) 外部事件计数器:对定时器输入引脚(TI)的输入信号的有效边沿进行计数,如果达到规定次数,就能用作产生中断的事件计数器。
- 4) 分频器功能(只限于单元 0 的通道 0):对定时器输入引脚(TI00)的输入时钟进行分频,然后从输出引脚(TO00)输出。
- 5) 输入脉冲间隔的测量:在定时器输入引脚(TI)的输入脉冲信号的有效边沿开始计数并且在下一个脉冲的有效边沿捕捉计数值,从而测量输入脉冲的间隔。
- 6) 输入信号的高/低电平宽度的测量:在定时器输入引脚(TI)的输入信号的一个边沿开始计数并且在 另一个边沿捕捉计数值,从而测量输入信号的高电平或者低电平的宽度。
- 7) 延迟计数器:在定时器输入引脚(TI)的输入信号的有效边沿开始计数并且在经过任意延迟期间后产生中断。

www.mcu.com.cn 25 / 71 Rev.1.0.1

6.14.2 多通道联动运行功能

多通道联动运行功能可将主控通道(主要控制周期的基准定时器)和从属通道(遵从主控通道运行的定时器)组合实现的功能。多通道联动运行功能能用作以下模式:

- 1) 单触发脉冲输出:将2个通道成对使用,生成能任意设定输出时序和脉宽的单触发脉冲。
- 2) PWM(Pulse Width Modulation)输出:将2个通道成对使用,生成能任意设定周期和占空比的脉冲。
- 3) 多重 PWM(Pulse Width Modulation)输出:能通过扩展 PWM 功能并且使用 1 个主控通道和多个从属通道,以固定周期生成最多 3 路任意占空比的 PWM 信号。

6.14.3 8 位定时器运行功能

8 位定时器运行功能可将 16 位定时器通道用作 2 个 8 位定时器通道的功能。(只能使用通道 1 和通道 3)

6.14.4 LIN-bus 支持功能

Timer4 单元可用于检查 LIN-bus 通信中的接收信号是否适合 LIN-bus 通信格式。

- 1) 唤醒信号的检测:在 UART 串行数据输入引脚(RxD)的输入信号的下降沿开始计数并且在上升沿 捕捉计数值,从而测量低电平宽度。如果该低电平宽度大于等于某固定值,就认为是唤醒信号。
- 2) 间隔场的检测:在检测到唤醒信号后,从 UART 串行数据输入引脚(RxD)的输入信号的下降沿开始计数并且在上升沿捕捉计数值,从而测量低电平宽度。如果该低电平宽度大于等于某固定值,就认为是间隔场。
- 3) 同步场脉宽的测量:在检测到间隔场后,测量 UART 串行数据输入引脚(RxD)的输入信号的低电平宽度和高电平宽度。根据以此方式测量的同步场的位间隔,计算波特率。

www.mcu.com.cn 26 / 71 Rev.1.0.1

6.15 定时器 TimerA

本产品内置一个 16bit 定时器 TimerA, 由重加载寄存器和递减计数器构成。可用于以下工作模式:

- 计时器模式:对计数源进行计数(计数源可以是时钟或者外部事件)
- ▶ 脉冲输出模式:对计数源进行计数并在溢出时输出脉冲
- ▶ 事件计数模式:对外部事件进行计数.可工作于深度睡眠模式下。
- ▶ 脉冲宽度测量模式:对外部脉冲宽度进行测量
- 脉冲周期测量模式:对外部脉冲周期进行测量

6.16 定时器 TimerM

本产品内置 2 通道专为电机控制优化过的 16bit 定时器 TimerM, 它有以下 4 种工作模式:

- ▶ 定时器模式:
 - 输入捕捉功能(以外部信号为触发,将计数值取到寄存器)
 - 输出比较功能(检测计数值和寄存器的值是否相同,且能在检测时更改引脚的输出)
 - PWM 功能(连续输出任意的脉宽)
- ▶ 复位同步 PWM 模式:输出锯齿波调制、无死区时间的三相波形(6个)
- ▶ 互补 PWM 模式:输出三角波调制、有死区时间的三相波形(6个)
- ➤ PWM3 模式:输出同周期 PWM 波形(2个)

6.17 定时器 TimerB

本产品内置一个16bit定时器TimerB,它有以下3种模式:

- ▶ 定时器模式:
 - 输入捕捉功能在上升沿、下降沿或者上升沿/下降沿的双边沿进行计数。
 - 输出比较功能"L"电平输出、"H"电平输出或者交替输出
- ▶ PWM模式:能进行任意占空比的PWM输出。
- ▶ 相位计数模式:能自动测量2相编码器的计数值。

6.18 定时器 TimerC

本产品内置一个 16bit 定时器 TimerC,可由软件、比较器或定时器 TimerM 进行触发,以实现输入捕获功能。

6.1915 位间隔定时器

本产品内置一个 15 位间隔定时器,可按事先设定的任意时间间隔产生中断(INTIT),可用于从深度睡眠模式中唤醒。

6.20 时钟输出/蜂鸣器输出控制电路

时钟输出控制器用于给外围IC提供时钟,蜂鸣器输出控制器用于输出蜂鸣器频率的方波。由专门的引脚实现时钟输出或者蜂鸣器输出。

www.mcu.com.cn 28 / 71 Rev.1.0.1

6.21 通用串行通讯单元

本产品内置2个通用串行通讯单元,每个单元最多有4个串行通讯通道。能实现标准SPI、简易SPI、UART和简易I²C的通信功能。各通道的功能分配如下:

6.21.1 3线串行接口(简易 SPI)

与主控设备输出的串行时钟(SCK)同步进行数据的发送和接收。

这是使用1条串行时钟(SCK)、1条发送串行数据(SO)和1条接收串行数据(SI)共3条通信线进行通信的时钟同步通信接口。

[数据的发送和接收]

- ▶ 7位或者8位的数据长度
- ▶ 发送和接收数据的相位控制
- ➤ MSB/LSB优先的选择

[时钟控制]

- ▶ 主控或者从属的选择
- ▶ 输入/输出时钟的相位控制
- ▶ 由预分频器和通道内部计数器产生的传送周期
- ▶ 最大传送速率

主控通信:最大值 Fclk/2 从属通信:最大值 Fmck/6

[中断功能]

▶ 传送结束中断、缓冲器空中断

[错误检测标志]

▶ 溢出错误

6.21.2 带从属片选功能的 SPI

支持从属片选输入功能的SPI串行通信接口。这是使用一个从属片选输入(SSI)、1条串行时钟(SCK)、1条发送串行数据(SO)和1条接收串行数据(SI)共4条通信线进行通信的时钟同步通信接口。 [数据的发送和接收]

- 7位或者8位的数据长度
- > 发送和接收数据的相位控制
- ➤ MSB/LSB优先的选择
- ▶ 发送和接收数据的电平设定

[时钟控制]

- ▶ 输入/输出时钟的相位控制
- ▶ 由预分频器和通道内部计数器产生的传送周期
- ▶ 最大传送速率 从属通信:最大值 F_{MCK}/6

[中断功能]

▶ 传送结束中断、缓冲器空中断

[错误检测标志]

▶ 溢出错误

6.21.3 **UART**

通过串行数据发送(TxD)和串行数据接收(RxD)共2条线进行异步通信的功能。使用这2条通信线,按数据帧(由起始位、数据、奇偶校验位和停止位构成)与其他通信方进行异步(使用内部波特率)的数据发送和接收。能通过使用发送专用(偶数通道)和接收专用(奇数通道)共2个通道来实现全双工UART通信,而且还能通过组合Timer4单元和外部中断(INTPO)来支持LIN-bus。

[数据的发送和接收]

- > 7位、8位或者9位的数据长度
- ➤ MSB/LSB优先的选择
- 》 发送和接收数据的电平设定、反相的选择
- ▶ 奇偶校验位的附加、奇偶校验功能
- ▶ 停止位的附加、停止位的检测

[中断功能]

- ▶ 传送结束中断、缓冲器空中断
- 帧错误、奇偶校验错误或者溢出错误引起的错误中断

[错误检测标志]

帧错误、奇偶校验错误、溢出错误

[LIN-bus功能]

- ▶ 唤醒信号的检测
- ▶ 间隔场(BF)的检测
- ▶ 同步场的测量、波特率的计算

6.21.4 简易 I²C

通过串行时钟(SCL)和串行数据(SDA)共2条线与多个设备进行时钟同步通信的功能。因为此简易I²C 是为了与闪存、A/D转换器等设备进行单通信而设计的,所以只能用作主控设备。开始条件和停止条件与操作控制寄存器一样,必须遵守AC特性,通过软件进行处理。

[数据的发送和接收]

- ▶ 主控发送、主控接收(只限于单主控的主控功能)
- ➤ ACK输出功能、ACK检测功能
- ▶ 8位数据长度(在发送地址时,用高7位指定地址,用最低位进行R/W控制)
- ▶ 通过软件产生开始条件和停止条件

[中断功能]

> 传送结束中断

[错误检测标志]

➤ ACK错误、溢出错误

[简易I2C 不支持的功能]

- ▶ 从属发送、从属接收
- ▶ 多主控功能(仲裁失败检测功能)
- > 等待检测功能

6.22 标准串行接口 IICA

串行接口 IICA 有以下 3 种模式:

- 1) 运行停止模式:这是用于不进行串行传送时的模式,能降低功耗。
- 2) I²C 总线模式(支持多主控): 此模式通过串行时钟(SCLA)和串行数据总线(SDAA)的2条线,与多个设备进行8位数据传送。符合I²C总线格式,主控设备能在串行数据总线上给从属设备生成"开始条件"、"地址"、"传送方向的指示"、"数据"和"停止条件"。从属设备通过硬件自动检测接收到的状态和数据。能通过此功能简化应用程序的I²C总线控制部分。因为串行接口IICA 的SCLA引脚和SDAA引脚用作漏极开路输出,所以串行时钟线和串行数据总线需要上拉电阻。
- 3) 唤醒模式:在深度睡眠模式中,当接收到来自主控设备的扩展码或者本地站地址时,能通过产生中断请求信号(INTIICA)解除深度睡眠模式。通过IICA控制寄存器进行设定。

6.23 控制器 CAN

通用的CAN控制器接口功能,符合ISO 11898中标准的CAN协议。

- ➢ 符合ISO 11898并且按照ISO/DIS 16845(CAN符合性)来测试。
- 使用标准帧和扩展帧来实现接收和发送。
- ▶ 通信速度:最大1Mbps。(CAN输入时钟大于等于8MHz)
- ▶ 1个通道有16个报文缓存。
- ▶ 接收/发送历史列表功能。
- ▶ 自动块传输功能。
- > 多缓存接收块功能。
- ▶ 每个通道四种模式的屏蔽设置。

www.mcu.com.cn 32 / 71 Rev.1.0.1

6.24 模数转换器(ADC)

本产品内置12位分辨率的模数转换器SARADC,可将模拟输入转换为数字值,支持多达15个通道的ADC模拟输入(ANI0~ANI12、ANI14~ANI15)。该ADC含有以下的功能:

- ▶ 12位分辨率、转换速率1.06Msps。
- ▶ 触发方式:支持软件触发,硬件触发和待机状态下的硬件触发。
- ▶ 通道选择:支持单通道选择和多通道扫描两种模式。
- ▶ 转换模式:支持单次转换和连续转换。
- ➤ 工作电压: 支持2.0V ≤ VDD ≤ 5.5 V的工作电压范围。
- ▶ 可检测内置基准电压(1.45V)和温度传感器。

ADC 能通过下述的模式组合设定各种A/D 转换模式。

ADO 能過度下延前疾丸蛋白液だ白州AD 科茨疾丸。						
	软件触发	通过软件操作来开始转换。				
	硬件触发无等待模式	通过检测硬件触发来开始转换。				
触发模式	硬件触发等待模式	在切断电源的转换待机状态下,通过检测硬件触发来接通电源,在经验 A/D电源稳定等待时间后自动开始转换。				
	选择模式	选择1个通道的模拟输入,进行A/D转换。				
通道选择模式	扫描模式	按顺序对4个通道的模拟输入进行A/D转换。能选择ANI0~ANI15中连续的4个通道作为模拟输入。				
转换模式	单次转换模式	对所选通道进行1次A/D转换。				
727天侯式	连续转换模式	对所选通道进行连续的A/D转换,直到被软件停止为止。				
采样时间/转换时间	采样时钟数/转换时钟数	采样时间可由寄存器设定,采样时钟数默认值为13.5个clk,转换时钟数最小值为31.5个clk。				

6.25 数模转换器 (DAC)

本产品内置2通道8位分辨率的模数转换器DAC,可将数字输入转换为模拟信号。具有以下特性:

- ▶ 8位分辨率D/A转换器。
- ▶ 支持两路独立模拟通道的输出
- ➤ R-2R梯型网络。
- 内置实时输出功能。

www.mcu.com.cn 33 / 71 Rev.1.0.1

6.26 比较器 (CMP)

本产品内置两通道比较器CMP0和CMP1,具有以下功能:

- ▶ CMP1的外部输入及参考多通道可选。
- 能给基准电压选择外部基准电压输入和内部基准电压。
- ▶ 能选择噪声消除数字滤波器的消除宽度。
- 能检测比较器输出的有效边沿并且产生中断信号。
- ▶ 能检测比较器输出的有效边沿并且将事件信号输出到联动控制器。

6.27 可编程增益放大器 (PGA)

本产品内置两路可编程增益放大器(PGAO和 PGA1),具有如下功能:

- ➢ 每路 PGA 的放大增益有7种选择: 4倍, 8倍, 10倍, 12倍, 14倍, 16倍, 32倍。
- ▶ 可选择外部引脚作为 PGA 负端反馈电阻的地。
- ▶ PGA0 的输出可被选为用于 A/D 转换器的模拟输入或者比较器 0(CMP0)正端的模拟输入。
- ▶ PGA1 的输出可被选为用于 A/D 转换器的模拟输入。

6.28 两线串行调试端口(SW-DP)

ARM 的 SW-DP 接口允许通过串行线调试工具连接到单片机。

www.mcu.com.cn 34 / 71 Rev.1.0.1

6.29 安全功能

6.29.1 闪存 CRC 运算功能(高速 CRC、通用 CRC)

通过CRC运算检测闪存的数据错误。

能根据不同的用途和使用条件,分别使用以下2个CRC。

- ▶ 高速CRC: 在初始化程序中, 能停止CPU的运行并且高速检查整个代码闪存区。
- ▶ 通用CRC: 在CPU运行中,不限于代码闪存区而能用于多用途的检查。

6.29.2 RAM 奇偶校验错误检测功能

在读 RAM 数据时, 检测奇偶校验错误。

6.29.3 SFR 保护功能

防止因 CPU 失控而改写重要的 SFR(Special Function Register)。

6.29.4 非法存储器存取检测功能

检测对非法存储器区域(没有存储器的区域或者存取受限的区域)的非法存取。

6.29.5 频率检测功能

能使用 Timer4 单元自检测 CPU 或外围硬件时钟频率。

6.29.6 A/D 测试功能

通过对A/D转换器的正(+)基准电压、负(-)基准电压、模拟输入通道(ANI)、温度传感器输出电压以及内部基准电压进行A/D转换来对A/D转换器进行自检测。

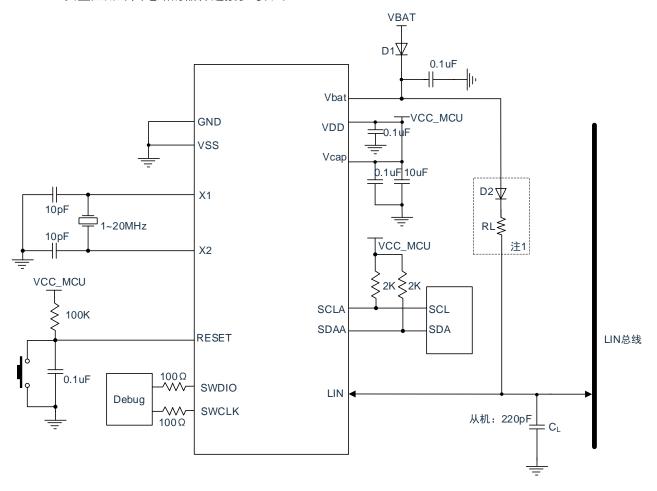
6.29.7 输入/输出端口的数字输出信号电平检测功能

在输入/输出端口为输出模式时,能读引脚的输出电平。

www.mcu.com.cn 35 / 71 Rev.1.0.1

6.30 按键功能

能通过按键中断输入引脚(KR0~KR7)输入下降沿,产生键中断(INTKR)。


www.mcu.com.cn 36 / 71 Rev.1.0.1

7 电气特性

7.1 典型应用外围电路

MCU 典型应用外围电路的器件连接参考如下:

注 1: 做主机节点用时才需接 D2, RL;

注 2: 做主节点用时,如需获得较缓的总线波形斜率,推荐使用 660 Ω/6.8nF 的 RL/CL 组合。

www.mcu.com.cn 37 / 71 Rev.1.0.1

7.2 绝对最大电压额定值

 $(T_A = -40 \sim 125^{\circ}C)$

项目	符号	条件	额定值	单位
电池电压	Vbat	-	-0.3~40	
MCU 电压	VDD	-	-0.5~6.5	V
** > ** !	V _{I1}	P00~P01、P10~P17、P31、P40~P41、 P51、P72~P75、P120、P136、P140、 P146、P147	-0.3~ VDD +0.3 [±] 1	V
输入电压	V _{I2}	P60~P63(N 沟道漏极开路)	-0.3~6.5	V
	Vı3	P20~P27、P121~P124、P137、EXCLK、 EXCLKS、RESETB	-0.3~ VDD +0.3 ^注 1	V
输出电压	V _{O1}	P00~P01、P10~P17、P31、P40~P41、 P51、P60~P63、P72~P75、P120、P130、 P136、P140、P146、P147	-0.3~ VDD +0.3 [±] 1	V
	V _{O2}	P20~P27、P137	-0.3~ VDD +0.3 ^{注 1}	V
模拟输入电压	V _{AI1}	ANI8~ANI12	-0.3~ VDD +0.3 并且 -0.3~AV _{REF} (+)+0.3 ^注 1,2	V
1天]以制入电压	V _{Al2}	ANI0~ANI7	-0.3~ VDD +0.3 并且 -0.3~AV _{REF} (+)+0.3 ^注 1,2	V

注1: 不超过6.5V。

注2: A/D转换对象的引脚不能超过AVREF(+)+0.3。

注意:即使是各项目中的 1 个项目瞬间超过绝对最大额定值,也可能降低产品的质量。绝对最大额定值是可能给产品带来物理性损伤的额定值,必须在不超过额定值的状态下使用产品。

备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. AV_{REF}(+): A/D 转换器的正(+)基准电压
- 3. 将 Vss作为基准电压。
- 4. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 38 / 71 Rev.1.0.1

7.3 绝对最大电流额定值

 $(T_A = -40 \sim 125^{\circ}C)$

项目	符号		条件	额定值	单位
		每个引脚	P00~P01、P10~P17、P31、P40~P41、P51、 P72~P75、P120、P130、P136、P137、P140、 P146、P147	-40	mA
高电平 输出电流	Іон1	引脚合计	P00~P01、P40~P41、P120、P130、P136、 P137、P140、P141	-70	mA
和山山飞加		-170mA	P10~P17、P31、P51、P72~P75、P146、P147	-100	mA
	Lean	每个引脚	D00 D07	-3	mA
	I _{OH2}	引脚合计	P20~P27	-15	mA
		每个引脚	P00~P01、P10~P17、P31、P40~P41、P51、 P60~P63、P72~P75、P120、P130、P136、 P137、P140、P146、P147	40	mA
低电平 输出电流	l _{OL1}	引脚合计	P00~P01、P40~P41、P120、P130、P136、 P137、P140	100	mA
489 E4 - C7/10		170mA	P10~P17、P31、P51、P72~P75、P146、P147	120	mA
	l _{OL2}	每个引脚	P20~P27	15	mA
	IOL2	引脚合计	F20~F21	45	mA
炒		每个引脚	A 기메소셔츠 차산 마 차	-3	mA
输入拉电流	IINJL	引脚合计	输入引脚连续直流拉电流 	-15	mA
***		每个引脚		3	mA
输入灌电流	IINJH	引脚合计	┧輸入引脚连续直流灌电流 ┃	15	mA
工作环境温度	TA	通常运行时 闪存编程时			°C
保存温度	T _{stg}	-		-65~150	°C

注意:即使是各项目中的 1 个项目瞬间超过绝对最大额定值,也可能降低产品的质量。绝对最大额定值是可能给产品带来物理性损伤的额定值,必须在不超过额定值的状态下使用产品。

备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 39 / 71 Rev.1.0.1

7.4 振荡电路特性

7.4.1 X1, XT1 特性

 $(T_{A}=-40\sim125^{\circ}C, 2.0V\leq VDD\leq5.5V, V_{SS}=0V)$

项目	谐振器	条件	最小值	典型值	最大值	单位
X1 时钟振荡频率(F _X)	陶瓷谐振器/晶体谐振器	-	1.0	1	20.0	MHz
X1 时钟振荡稳定时间	陶瓷谐振器/晶体谐振器	20MHz, C=10pF	-	15	-	ms
X1 时钟振荡反馈电阻	陶瓷谐振器/晶体谐振器	-	0.6	-	1.8	МΩ
XT1 时钟振荡频率(F _{XT})	晶体谐振器	-	32	32.768	35	KHz
XT1 时钟振荡稳定时间	晶体谐振器	32.768KHz, C=10pF	-	2	1	S

备注:

- 1. 只表示振荡电路的频率容许范围,指令执行时间请参照 AC 特性。
- 2. 请委托谐振器厂商给予安装电路后的评估,并且在确认振荡特性后使用。
- 3. 低温规格值由设计保证,量产不测低温条件。

7.4.2 内部振荡器特性

 $(T_A = -40 \sim 125^{\circ}C, 2.0V \leq VDD \leq 5.5V, V_{SS} = 0V)$

谐振器	条件	最小值	典型值	最大值	单位
高速内部振荡器的时钟频率(F _{IH}) ^{注 1,2}	-	1.0	-	64.0	MHz
高速内部振荡器稳定时间(T _{SU})	-	12	-	us	
	T _A = 10~70°C	-1.0	-	+1.0	%
 高速内部振荡器的时钟频率精度	T _A = 0~105°C	-1.5	-	+1.5	%
同还内部派汤品的时钟则举相反	T _A = -10~125°C	-2.0	-	+2.0	%
	T _A = -40~125°C	-4.0	-	+4.0	%
低速内部振荡器的时钟频率(F∟)	-	10	15	22	KHz

注 1: 通过选项字节选择高速内部振荡器的频率。

注 2: 只表示振荡电路的特性,指令执行时间请参照 AC 特性。

备注: 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 40 / 71 Rev.1.0.1

7.5 DC 特性

7.5.1 引脚特性

 $(T_{A}=-40~125^{\circ}C, 2.0V \leq VDD \leq 5.5V, V_{SS}=GND=0V)$

项目	符号	条件		最小值	典型值	最大值	单位
		P00~P01、P10~P17、P31、 P40~P41、P51、P72~P75、	2.0V≤VDD≤5.5V -40~85°C	-	-	-12.0 ^注 2	
		P120、P130、P136、P137、 P140、P146、P147 单独 1 个引脚	2.0V≤VDD≤5.5V 85~125°C	-	-	-6.0 ^{注2}	mA
		P00~P01、P40~P41、P120、 P130、P136、P137、P140、 引脚合计(占空比≤70%时 ^{注3})	4.0V≤VDD≤5.5V -40~85°C	-	-	-60.0	mA
			4.0V≤VDD≤5.5V 85~125°C	-	-	-30.0	ША
			2.4V≤VDD<4.0V	-	-	-12.0	mA
	. — .		2.0V≤VDD<2.4V	-	-	-6.0	mA
高电平 输出		P10~P17、P31、P51、 P72~P75、P146、P147 引脚合计(占空比≤70%时 ^{注3})	4.0V≤VDD≤5.5V -40~85°C	-	-	-80.0	A
_制 山 电流 ^{注1}			4.0V≤VDD≤5.5V 85~125°C	-	-	-30.0	mA
			2.4V≤VDD<4.0V	-	-	-20.0	mA
			2.0V≤VDD<2.4V	-	-	-10.0	mA
			4.0V≤VDD≤5.5V -40~85°C	-	-	-140.0	
		引脚合计(占空比≤70%时 ^{注3})	4.0V≤VDD≤5.5V 85~125°C	-	-	-60.0	mA
			2.4V≤VDD≤4.0V	-	-	-30.0	
			2.0V≤VDD≤2.4V	-	-	-15.0	
	laur	P20~P27 单独 1 个引脚	2.0V≤VDD≤5.5V	-	-	-2.5 ^{注 2}	mA
	Іон2	引脚合计(占空比≤70%时 ^{注3})	2.0V≤VDD≤5.5V	-	-	-10	mA

- 注 1: 这是即使电流从 VDD 引脚流到输出引脚也保证器件工作的电流值。
- 注 2: 不能超过合计的电流值。
- 注 3: 这是"占空比≤70%条件"的输出电流值。改为占空比>70%的输出电流值能用以下的计算式进行计算(将占空比改为 n% 的情况)。
 - 引脚合计的输出电流=(IoH×0.7)/(n×0.01)
 - <计算例子>I_{OH}= -10.0mA、n=80%
 - 引脚合计的输出电流= (-10.0×0.7)/(80×0.01) ≈ -8.7mA
 - 各引脚的电流不会因占空比而变, 而且不会流过绝对最大额定值以上的电流。
- 注意: 在 N 沟道漏极开路模式中, P00、P01、P10、P11、P13~P15、P17、P51、P55、P74 不输出高 电平。

备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 41 / 71 Rev.1.0.1

 $(T_{A}=-40\sim125^{\circ}C, 2.0V\leq VDD\leq5.5V, V_{SS}=GND=0V)$

项目	符号	条件		最小值	典型值	最大值	单位
		P00~P01、P10~P17、P31、 P40~P41、P51、P60~P63、	2.0V≤VDD≤5.5V -40~85°C	-	-	30 ^注 2	
		P72~P75、P120、P130、 P136、P137、P140、P146、 P147 单独 1 个引脚	2.0V≤VDD≤5.5V 85~125°C	-	-	15 ^{注 2}	mA
		P00~P01、P40~P41、P120、 P130、P136、P137、P140、 引脚合计(占空比≤70%时 ^{注3})	4.0V≤VDD≤5.5V -40~85°C	-	-	100	mΛ
			4.0V≤VDD≤5.5V 85~125°C	-	-	50	mA
			2.4V≤VDD<4.0V	-	-	30	mA
	l _{OL1}		2.0V≤VDD<2.4V	-	-	15	mA
低电平输出电流 ^{注1}		P10~P17、P31、P51、 P60~P63、P72~P75、P146、 P147 引脚合计(占空比≤70%时 ^{注3})	4.0V≤VDD≤5.5V -40~85°C	-	-	120	A
			4.0V≤VDD≤5.5V 85~125°C	-	-	60	mA
			2.4V≤VDD<4.0V	-	-	40	mA
			2.0V≤VDD<2.4V	-	-	20	mA
			4.0V≤VDD≤5.5V -40~85°C	-	-	150	
		全部引脚合计 (占空比≤70%时 ^{注3})	4.0V≤VDD≤5.5V 85~125°C	-	-	80	mA
			2.4V≤VDD≤4.0V	-	-	50	
			2.0V≤VDD≤2.4V	-	-	30	
		P20~P27 单独 1 个引脚	2.0V≤VDD≤5.5V	-	-	6 ^{注 2}	mA
	I _{OL2}	全部引脚合计 (占空比≤70%时 ^{注3})	2.0V≤VDD≤5.5V	-	-	20	mA

- 注 1: 这是即使电流从输出引脚流到 GND、Vss 引脚也保证器件工作的电流值。
- 注 2: 不能超过合计的电流值。
- 注 3: 这是"占空比≤70%条件"的输出电流值。改为占空比>70%的输出电流值能用以下的计算式进行计算(将占空比改为 n%的情况)。
 - 引脚合计的输出电流=(IoL×0.7)/(n×0.01)
 - <计算例子>IoL=10.0mA、n=80%
 - 引脚合计的输出电流=(10.0×0.7)/(80×0.01) ≈ 8.7mA
 - 各引脚的电流不会因占空比而变,而且不会流过绝对最大额定值以上的电流。

备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 42 / 71 Rev.1.0.1

 $(T_{A=}-40\sim125^{\circ}C, 2.0V\leqslant VDD\leqslant5.5V, V_{SS=}GND=0V)$

项目	符号	条件		最小值	典型值	最大值	单位
电池电压	Vbat	-		5.5		28	V
LDO 输出电压	Vcap	-		4.9		5.1	V
MCU 输入电压	VDD	-	2.0	-	5.5	V	
电源地输入电压	V _{SS} GND	-		-0.3	-	-	V
	V _{IH1}	P00~P01、P10~P17、P31、 P40~P42、P51、P72~P75、 P120、P136、P140、 P146、P147	施密特输入	0.8VDD	-	VDD	V
	V _{IH2}	P01、P10、P14~P17、P30	TTL 输入 4.0V≤VDD≤5.5V	2.2	-	VDD	V
高电平输入电压			TTL 输入 3.3V≤VDD<4.0V	2.0	-	VDD	٧
			TTL 输入 2.0V≤VDD<3.3V	1.5	-	VDD	٧
	V _{IH3}	P20~P27、P137	0.7VDD	-	VDD	V	
	V _{IH4}	P60~P63	0.7VDD	-	6.0	V	
	V _{IH5}	P121~P124、EXCLK、EXCL	(S、RESETB	0.8VDD	-	VDD	V
	V _{IL1}	P00~P01、P10~P17、P31、 P40~P41、P51、P72~P75、 P120、P136、P140、 P146、P147	施密特输入	0	-	0.2VDD	>
			TTL 输入 4.0V≤VDD≤5.5V	0	-	0.8	V
低电平输入电压	V _{IL2}	P01、P10、P14~P17	TTL 输入 3.3V≤VDD<4.0V	0	-	0.5	V
			TTL 输入 2.0V≤VDD<3.3V	0	-	0.32	V
	V _{IL3}	P20~P27、P137		0	-	0.3VDD	V
	V _{IL4}	P60~P63		0	-	0.3VDD	V
	V _{IL5}	P121~P124、EXCLK、EXCL	(S, RESETB	0	-	0.2VDD	V

注意: 即使在 N 沟道漏极开路模式中, P00、P01、P10、P11、P13~P15、P17、P51、P55、P74 的 V_H最大值也为 VDD。

备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 43 / 71 Rev.1.0.1

 $(T_{A=} -40 \sim 125$ °C ~ 2.0 V \leq VDD \leq 5.5 $V \sim V_{SS}=GND=0$ V)

项目	符号	条件	‡	最小值	典型值	最大值	单位
		P00~P01、P10~P17、	4.0V≤VDD≤5.5V、 I _{OH1} = -12.0mA	VDD-1.5	-	1	V
	V _{OH1}	P31、P40~P41、P51、	4.0V≤VDD≤5.5V、 I _{OH1} = -6.0mA	VDD-0.7	-	-	V
	VOH	P130、P136、P137、 P140、P146、P147	2.4V≤VDD≤5.5V、 I _{OH1} = -3.0mA	VDD-0.6	-	-	V
高电平输出电压		1 140(1 140(1 147	2.0V≤VDD≤5.5V、 I _{OH1} = -2mA	VDD-0.5	-	-	V
10.6 1 柳田毛江			4.0V≤VDD≤5.5V、 I _{OH2} = -2.5mA	VDD-1.5	-	-	V
	V _{OH2}	P20~P27	4.0V≤VDD≤5.5V、 I _{OH2} = -1.5mA	VDD-0.7	-	-	V
	10112	720 727	2.4V≤VDD≤5.5V、 I _{OH2} = -0.5mA	VDD-0.6	-	-	V
			2.0V≤VDD≤5.5V、 I _{OH2} = -0.4mA	VDD-0.5	-	-	V
	V _{OL1}	P00~P01、P10~P17、 P31、P40~P41、P51、 P60~P63、P72~P75、 P120、P130、P136、 P137、P140、P146、	4.0V≤VDD≤5.5V、 I _{OL1} =30.0mA	-	-	1.2	V
			4.0V≤VDD≤5.5V、 I _{OL1} =15.0mA	-	-	0.7	V
	VOLI		2.4V≤VDD≤5.5V、 I _{OL1} =6.0mA	-	-	0.4	V
低电.平输出电.压		P147	2.0V≤VDD≤5.5V、 I _{OL1} =4.0mA	-	-	0.4	V
180名 1 柳山石江			4.0V≤VDD≤5.5V、 I _{OL2} =6.0mA	-	-	1.2	V
	V _{OL2}	P20~P27	4.0V≤VDD≤5.5V、 I _{OL2} =4.0mA	-	-	0.7	V
	VOL2	P20~P21	2.4V≤VDD≤5.5V、 I _{OL2} =1.5mA	-	-	0.4	V
			2.0V≤VDD≤5.5V、 I _{OL2} =1.0mA	-	-	0.4	V

注意:在 N 沟道漏极开路模式中, P00、P02~P04、P10、P11、P13~P15、P17、P30、P50、P51、P55、P71、P74 不输出高电平。

备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 44 / 71 Rev.1.0.1

$(T_{A=}-40\sim125^{\circ}C, 2.0V\leqslant VDD\leqslant5.5V, V_{SS=}GND=0V)$

项目	符号	条件	‡	最小值	典型值	最大值	单位
	I _{LIH1}	P00~P01、P10~P17、 P31、P40~P41、P51、 P72~P75、P120、P136、 P140、P146、P147	V _I = VDD	-	-	1	uA
高电平输入漏电流	I _{LIH2}	P20~P27、P137、 RESETB	V _I = VDD	-	-	1	uA
	I _{LIH3}	P121~P124 (X1、X2、 EXCLK、XT1、XT2、	V⊫ VDD,输入端口和外 部时钟输入时	-	-	1	uA
		EXCLKS)	V⊫ VDD,连接谐振器时	-	-	10	uA
	ILIL1	P00~P01、P10~P17、 P31、P40~P41、P51、 P72~P75、P120、P136、 P140、P146、P147	V _I =V _{SS}	-	-	-1	uA
低电平输入漏电流	I _{LIL2}	P20~P27、P137、 RESETB	V _I =V _{SS}	-	-	-1	uA
	I _{LIL3}	P121~P124 (X1, X2, EXCLK, XT1, XT2,	V _{I=} V _{SS} ,输入端口和外 部时钟输入时	-	-	-1	uA
		EXCLKS)	V _I =V _{SS} ,连接谐振器时	-	-	-10	uA
内部上拉电阻	Ru	P00~P01、P10~P17、 P31、P40~P41、P51、 P72~P75、P120、P136、 P137、P140、P146、 P147	V _I =V _{SS} ,输入端口时	10	30	100	ΚΩ

备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 45 / 71 Rev.1.0.1

7.5.2 电源电流特性

 $(T_A = -40 \sim 125$ °C, $2.0V \leq VDD \leq 5.5V$, $V_{SS} = GND = 0V)$

项目	符号				最小值	典型值	最大值	单位	
				F _{HOCO} =64MHz、F _{IH} =32MHz ^⅓ 3		-	4.6	10.5	
			高速内部振荡器	FHOCO=48MHz, FIH=4	8MHz ^{注3}	-	4.9	11.5	mA
				FHOCO=32MHz, FIH=3	32MHz ^{注3}	-	4.4	9.0	
	I_{DD1}	运行模式	高速主系统时钟	F _M x=20MHz ^½ 2	输入方波	-	2.3	5.4	mA
			同处工//规制师	T WAZZOWI IZ	连接晶振	-	2.3	5.4	ША
			副系统时钟运行	F _{SUB} =32.768KHz ^{±4}	输入方波	-	70	120	uA
			副系统的押运行	FSUB=32.700NFIZ	连接晶振	-	70	120	uд
			高速内部振荡器	FHOCO=64MHz $\sqrt{F_{IH}}$ =32MHz ^{\pm3}		-	1.2	5.8	
MCU电流 ^{注1}		睡眠模式		FHOCO=48MHz, FIH =	48MHz ^{注3}	-	1.2	6.5	mA
WCO电池				FHOCO=32MHz \sim FIH =32MHz $^{\pm 3}$		-	1.2	4.5	
	I_{DD2}		高速主系统时钟	F _{MX} =20MHz ^½ 2	输入方波	-	0.7	2.0	mA
		快八			连接晶振	-	0.7	2.0	ША
			副系统时钟运行	「 22.700KH=注5	输入方波	-	0.7	40	uA
			副示纸的押 运门	F _{SUB} =32.768KHz ^{±5}	连接晶振	-	0.7	40	uA
			T _A = -40°C~25°C V	/DD=5.0V		-	0.45	1.1	
	I _{DD3} ^{注6}	深睡眠模	T _A = -40°C~85°C V	/DD=5.0V		-	0.45	8.0	uA
	3 כטטו	式 ^{注7}	T _A = -40°C~105°C	VDD=5.0V	· · · · · · · · · · · · · · · · · · ·	-	0.45	12.5	uA
			T _A = -40°C~125°C	VDD=5.0V		-	0.45	35	

- 注 1: 这是流过 VDD 的总电流,包含输入引脚固定为 VDD 或者 Vss 状态的输入漏电流。典型值: CPU 处于乘法运算指令执行(IDD1),且不包含外围工作电流。最大值: CPU 处于乘法运算指令执行 (IDD1),且包含外围工作电流,但不包含流到 A/D 转换器、LVD 电路、I/O 端口以及内部上拉或者下拉电阻的电流,也不包含改写数据闪存时的电流。
- 注 2: 这是高速内部振荡器和副系统时钟停止振荡的情况。
- 注 3: 这是高速主系统时钟和副系统时钟停止振荡的情况。
- 注 4: 这是高速内部振荡器和高速主系统时钟停止振荡的情况。
- 注 5: 这是高速内部振荡器和高速主系统时钟停止振荡的情况。包含流到 RTC 的电流,但是不包含流到 15 位间隔定时器和看门狗定时器的电流。
- 注 6: 不包含流到 RTC、15 位间隔定时器和看门狗定时器的电流。
- 注 7: 有关深度睡眠模式中副系统时钟运行时的电流值,请参照睡眠模式中副系统时钟运行时的电流值。 备注:
 - 1. FHOCO: 高速内部振荡器的时钟频率, FIH: 高速内部振荡器提供的系统时钟频率。
 - 2. FSUB:外部副系统时钟频率(XT1/XT2时钟振荡频率)。
 - 3. F_{MX}: 外部主系统时钟频率(X1/X2时钟振荡频率)。
 - 4. 典型值的温度条件是 T_A=25℃。
 - 5. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 46 / 71 Rev.1.0.1

 $(T_A=-40\sim125^{\circ}C$, $V_{DS}=GND=0V)$

项目	符号		Ś		最小值	典型值	最大值	单位	
				FHOCO=64MHz、FI	_H =32MHz	-	7.1	14.5	
			高速内部振荡器	F _{HOCO} =48MHz、F _{IH} =48MHz		-	7.4	15.5	mA
				F _{HOCO} =32MHz、F _{II}	_H =32MHz	-	6.9	13.0	
	I _{bat1}	运行模式注1	高速主系统时钟	F _M x=20MHz	输入方波	-	4.8	9.4	mA
			同处工水规判证	I WX-ZOWII IZ	连接晶振	-	4.8	9.4	IIIA
			副系统时钟运行	E 00.700KH-	输入方波	-	2.6	4.2	mA
			副示规的 押戶门	F _{SUB} =32.768KHz	连接晶振	-	2.6	4.2	IIIA
		睡眠模式 ^{注2}		F _{HOCO} =64MHz、F _{IH} =32MHz		-	1.3	6.0	
			高速内部振荡器	FHOCO=48MHz、FI	н =48MHz	-	1.3	6.7	mA
Vbat引脚电流				FHOCO=32MHz、FI	н =32MHz	-	1.3	4.7	
	I _{bat2}		高速主系统时钟	F _{MX} =20MHz	输入方波	-	8.0	2.2	mA
					连接晶振	-	0.8	2.2	IIIA
			副系统时钟运行	E 00.700KU	输入方波	-	41	82	uA
			副 示	F _{SUB} =32.768KHz	连接晶振	-	41	82	uA
			T _A = -40°C~25°C			-	41	43	
		次睡吧措士注3	T _A = -40°C~85°C			-	41	68	uA
	bat3	/木曄��佚��	T _A = -40°C~105°C			-	41	113	uA
			T _A = -40°C~125°C		-	41	135		
	I _{bat4}	停止模式 ^{注4}	T _A = -40°C~125°C		-	-	8.5	73	uA

- 注 1: 运行模式,MCU 处于运行状态,LIN 收发器正常工作,LDO 输出 5V,最大驱动电流 70mA。
- 注 2: 睡眠模式,停止 CPU 运行时钟,外设可根据设定工作,LIN 收发器处于待机状态,LDO 持续输出 5V,驱动能力为 70mA,可通过外部中断唤醒系统。
- 注 3: 深睡眠模式, 高速系统时钟及整个系统停止, LIN 收发器处于待机状态, LDO 持续输出 5V, 驱动电流 为 70mA 可通过外部中断唤醒系统。
- 注 4: 停止模式 LDO 停止输出 5V, MCU 处于下电状态, LIN 收发器为休眠状态, 可以通过 LIN 总线远程唤醒系统。

www.mcu.com.cn 47 / 71 Rev.1.0.1

$(T_{\Lambda}2)$	10~125°C.	2.0V≤VDD≤5.5V	. Vee-GND-0V)

参数	符号	条件	条件		典型值	最大值	单位
低速内部振荡器工作电流	I _{FIL} ^{注1}		-	-	0.2	-	uA
RTC工作电流	I _{RTC} ^{注1,2,3}		-	-	0.04	-	uA
15位间隔定时器工作电流	I _{IT} ^{注1,2,4}	-		-	0.02	-	uA
看门狗定时器工作电流	I _{WDT} ^{注1,2,5}	F _{IL} =15KHz		-	0.22	-	uA
	I _{ADC} ^{±1,6}	ADC HS 相	ADC HS 模式@64MHz		2.2	-	mA
A/D转换器工作电流		ADC HS 模式@4MHz		-	1.3	-	mA
八〇代汉丽工下屯加		ADC LC 模式@24MHz		-	1.1	-	mA
		ADC LC模式@4MHz		-	0.8	-	mA
D/A转换器工作电流	I _{DAC} ^{注1,8}	每个通道		-	1.4	-	mA
PGA工作电流		每个通道		-	480	700	uA
比较器工作电流	I _{CMP} ^{注1,9}	每个通道	不使用内部基准电压	-	60	100	uA
心 拟 奋工作电流	TOMP /		使用内部基准电压	-	80	140	uA
LVD工作电流	I _{LVD} ^{注1,7}		-	-	0.08		uA

- 注 1: 这是流过 VDD 的电流。
- 注 2: 这是高速内部振荡器和高速系统时钟停止振荡的情况。
- 注 3: 这是只流到实时时钟(RTC)的电流(不包含低速内部振荡器和 XT1 振荡电路的工作电流)。在运行模式或者睡眠模式中实时时钟运行的情况下,微控制器的电流值为 IDD1 或者 IDD2 加上 IRTC 的值。另外,当选择低速内部振荡器时,必须加上 IFIL。副系统时钟运行时的 IDD2 包含实时时钟的工作电流。
- 注 4: 这是只流到 15 位间隔定时器的电流(不包含低速内部振荡器和 XT1 振荡电路的工作电流)。在运行模式或者睡眠模式中 15 位间隔定时器运行的情况下,微控制器的电流值为 IDD1 或者 IDD2 加上 IT 的值。另外,当选择低速内部振荡器时,必须加上 IFIL。
- 注 5: 这是只流到看门狗定时器的电流(包含低速内部振荡器的工作电流)。在看门狗定时器运行的情况下,微控制器的电流值为 lob1 或者 lob2 或者 lob3 加上 lwbT 的值。
- 注 6: 这是只流到 A/D 转换器的电流。在运行模式或者睡眠模式中 A/D 转换器运行的情况下,微控制器的电流值为 I_{DD1} 或者 I_{DD2} 加上 I_{ADC} 的值。
- 注 7: 这是只流到 LVD 电路的电流。在 LVD 电路运行的情况下,微控制器的电流值为 ldd 或者 ldd 或者 ldd ldd lld lld 的值。
- 注 8: 这是只流到 D/A 转换器的电流。在运行模式或者睡眠模式中 D/A 转换器运行的情况下,微控制器的电流值为 lpd 或者 lpd 加上 lpac 的值。
- 注 9: 这是只流到比较器电路的电流。在比较器电路运行的情况下,微控制器的电流值为 I_{DD1} 或者 I_{DD2} 或者 I_{DD3} 加上 I_{CMP} 的值。

备注:

- 1. F_□: 低速内部振荡器的时钟频率
- 2. 典型值的温度条件是TA=25℃。
- 3. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 48 / 71 Rev.1.0.1

7.6 AC 特性

 $(T_{A}\text{=-40$\sim125^{\circ}$C} \text{, 2.0V} \leqslant \text{VDD} \leqslant 5.5\text{V} \text{, V}_{SS}\text{=GND=0V})$

项目	符号	条件	=	最小值	典型值	最大值	单位
指令周期 (最短指令	Tcy	主系统时钟(F _{MAIN}) 运行	2.0V≤VDD≤5.5V	0.02084	1	1	us
执行时间)	TCY	副系统时钟(F _{SUB}) 运行	2.0V≤VDD≤5.5V	28.5	30.5	31.3	us
外部系统时	F _{EX}	2.0V≤VDD≤5.5V		1.0	-	20.0	MHz
钟频率	F _{EXS}	2.0V≤VDD≤5.5V	32.0	-	35.0	KHz	
外部系统时	T _{EXH} , T _{EXL}	2.0V≤VDD≤5.5V	.0V≤VDD≤5.5V			-	ns
钟输入的高 低电平宽度	T _{EXHS} , T _{EXLS}	2.0V≤VDD≤5.5V	13.7	-	-	us	
TI00 ~ TI03、输入 的高低电平 宽度	T _{TIH} , T _{TIL}	2.0V≤VDD≤5.5V	2.0V≤VDD≤5.5V			-	ns
定时器			2.4V≤VDD≤5.5V	100	-	-	ns
TimerA 的输 入周期	Tc	TAIO	2.0V≤VDD<2.4V	300	- 1	-	ns
定时器			2.4V≤VDD≤5.5V	40	-	-	ns
TimerA 输入 的高低电平 宽度	TTAIH, TTAIL	TAIO	2.0V≤VDD<2.4V	120	-	-	ns

备注:

- 1. FMCK: Timer4 单元的运行时钟频率。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 49 / 71 Rev.1.0.1

$(T_{A=}-40\sim125^{\circ}C, 2.0V\leqslant VDD\leqslant5.5V, V_{SS}=GND=0V)$

项目	符号		条件	最小值	典型值	最大值	单位
定时器 M 输入的高低电平宽度	T _{TMIH} , T _{TMIL}	TMIOA0、TMIOA2 TMIOB1、TMIOC0 TMIOD0、TMIOD	TMIOC1	3/F _{CLK}	-	-	ns
定时器 M 强制截止信号	T _{TMSIL}	P136/INTP0	2MHz <f<sub>CLK≤48MHz</f<sub>	1	-	-	us
输入的低电平宽度	ITMSIL	F130/INTFU	F _{CLK} ≤2MHz	1/F _{CLK} +1	-	-	us
定时器 B 输入的高低电 平宽度	T _{TBIH} ,	TBIOA、TBIOB		2.5/F _{CLK}	-	1	ns
TO00 ~ TO03,		4.0V≤VDD≤5.5V		-	-	16	MHz
TAIO0、TAO0、 TMIOA0、TMIOA1、		2.4V≤VDD<4.0V		-	-	8	MHz
TMIOA0、TMIOA1、 TMIOB0、TMIOB1、 TMIOC0、TMIOC1、 TMIOD0、TMIOD1、 TBIOA、TBIOB的输出 频率	Fто	2.0V≤VDD<2.4V		-	-	4	MHz
OLIVBUZO OLIVBUZA		4.0V≤VDD≤5.5V		-	-	16	MHz
CLKBUZ0、CLKBUZ1 的输出频率	F _{PCL}	2.4V≤VDD<4.0V		-	-	8	MHz
口列和口口列升		2.0V≤VDD<2.4V		-	-	4	MHz
中断输入的高低电平宽 度	T _{INTH} , T _{INTL}	INTP0~INTP11	2.0V≪VDD≪5.5V	1	-	-	us
键中断输入的高低电平 宽度	T _{KR}	KR0~KR7	2.0V≪VDD≪5.5V	250	-	-	ns
RESETB 的低电平宽度	T _{RSL}		-	10	-	-	us

备注: 低温规格值由设计保证, 量产不测低温条件。

www.mcu.com.cn 50 / 71 Rev.1.0.1

7.7 外围功能特性

7.7.1 通用接口单元

(1) UART 模式

 $(T_{A}=-40\sim85^{\circ}C, 2.0V \leq VDD \leq 5.5V, V_{SS}=GND=0V)$

项目		条件		规格值			
		余件	最小值	最大值	单位		
传送速率 2.0V ≤VDD ≤ 5.5V		-	-	F _{MCK} /6	bps		
	2.0V ≤ VDD ≤ 5.5V 最大传送速率的理论值 F _{MCK} = F _{CLK}		8	Mbps			

$(T_A=+85\sim125^{\circ}C, 2.0V\leq VDD\leq5.5V, V_{SS}=GND=0V)$

项目		条件	规格值	直	单位
坝日	坝日		最小值	最大值	中加
传送速率 2.0V ≤VDD ≤ 5		-	-	F _{MCK} /12	bps
	2.0V ≤VDD ≤ 5.5V	最大传送速率的理论值 FMCK = FCLK	-	4	Mbps

备注:由设计保证,量产不测试。

www.mcu.com.cn 51 / 71 Rev.1.0.1

(2) 三线 SPI 模式(主控模式,内部时钟输出)

 $(T_{A=}-40\sim125^{\circ}C, 2.0V\leq VDD\leq5.5V, V_{SS}=GND=0V)$

五日	符号	条件		-40~8	5°C	85~12	25°C	出台
项目	1寸写		余计	最小值	最大值	最小值	最大值	单位
			4.0V ≤VDD ≤ 5.5V	41.67	1	83.33	1	ns
	Тксүт	Tkcy1 ≥ 2/ Fclk	2.7V ≤VDD ≤ 5.5V	83.33	1	166.67	1	ns
SCLKp 周期时间	TKCY1	TRCY1 > 2/ FCLK	2.4V ≤VDD ≤ 5.5V	125	-	250	-	ns
			2.0V ≤VDD ≤ 5.5V	250	1	500	1	ns
		4.0V ≤VDD ≤ 5	5.5V	T _{KCY1} /2-7	-	T _{KCY1} /2- 14	-	ns
SCLKp 高/低电	TKH1 \ TKL1	2.7V ≤VDD ≤ 5.5V		T _{KCY1} /2- 10	-	T _{KCY1} /2- 20	-	ns
平宽度		2.4V ≤VDD ≤ 5.5V		T _{KCY1} /2- 18	-	T _{KCY1} /2-36	-	ns
		2.0V ≤VDD ≤ 5.5V		T _{KCY1} /2- 38	-	T _{KCY1} /2- 76	-	ns
		4.0V ≤VDD ≤ 5.5V		23	1	46	1	ns
SDIp 准备时间	T _{SIK1}	2.7V ≤VDD ≤ 5	5.5V	33	1	66	ı	ns
(对 SCLKp↑)	I SIK1	2.4V ≤VDD ≤ 5	5.5V	44	1	88	ı	ns
		2.0V ≤VDD ≤ 5	5.5V	75	-	113	-	ns
SDIp 保持时间 (对 SCLKp↑)	T _{KSI1}	2.0V ≤VDD ≤ 5.5V		10	-	20	-	ns
SCLKp↓→SDOp 输出延迟时间	T _{KSO1}	2.0V ≤VDD ≤ 5 C=20pF [±] 1	.5V	-	10	-	20	ns

注 1: C是 SCLKp、SDOp 输出线的负载电容。

注意:通过端口输入模式寄存器和端口输出模式寄存器,将 SDIp 引脚选择为通常的输入缓冲器并且将 SDOp 引脚和 SCLKp 引脚选择为通常的输出模式。

备注:由设计保证,量产不测试。

www.mcu.com.cn 52 / 71 Rev.1.0.1

(3) 三线 SPI 模式 (从属模式,外部时钟输入)

 $(T_A=-40\sim125^{\circ}C, 2.0V\leq VDD\leq5.5V, V_{SS}=GND=0V)$

TE [2]	<i>5</i> 5 □		7 /L	-40~	85°C	85~	125°C	单
项目	符号	2	条件	最小值	最大值	最小值	最大值	位
		4.0V ≤VDD	20MHz <f<sub>MCK</f<sub>	8/Fмск	-	16/Fмск	-	ns
		≤ 5.5V	F _{MCK} ≤20MHz	6/Емск	-	12/F _{MCK}	-	ns
SCLKp		2.7V ≤VDD	16MHz < FMCK	8/Fмск	-	16/Fмск	-	ns
周期时间 T _{KCY2}	≤ 5.5V	F _{MCK} ≤16MHz	6/F _{MCK}	-	12/F _{MCK}	-	ns	
		2.4V ≤VDD ≤	€ 5.5V	6/F _{MCK} 且 ≥500	-	12/F _{MCK} 且 ≥1000	-	ns
	2.0V ≤VDD ≤	€ 5.5V	6/F _{MCK} 且 ≥750	-	12/F _{MCK} 且 ≥1500	-	ns	
SCLKp		4.0V ≤VDD ≤ 5.5V		T _{KCY1} /2-7	-	T _{KCY1} /2-14	-	ns
高/低电	T _{KH2} T _{KL2}	2.7V ≤VDD ≤ 5.5V		T _{KCY1} /2-8	-	T _{KCY1} /2-16	-	ns
平宽度	TRLZ	2.0V ≤VDD ≤	€ 5.5V	T _{KCY1} /2-18	-	T _{KCY1} /2-36	-	ns
SDIp 准		2.7V ≤VDD ≤ 5.5V		1/F _{MCK} +20	-	1/F _{MCK} +40	-	ns
备时间 (对 SCLKp↑)	T _{SIK2}	2.0V ≤VDD ≤ 5.5V		1/Fмск+30	-	1/F _{MCK} +60	-	ns
SDIp 保 持时间 (对 SCLKp↑)	T _{KSI2}	2.0V ≪VDD ≤	€ 5.5V	1/F _{MCK} +31	,	1/F _{MCK} +62	-	ns
SCLKp↓		2.7V ≤VDD ≤ C=30pF ^注 1		-	2/F _{MCK} +44	-	2/F _{MCK} +66	ns
→SDOp 输出延迟 TKSO2	T _{KSO2}	2.4V ≤VDD ≤ 5.5V C=30pF ^{±1}		-	2/F _{MCK} +75	-	2/F _{MCK} +113	ns
时间		2.0V ≤VDD ≤ C=30pF [±] 1	€ 5.5V	-	2/F _{MCK} +100	-	2/F _{MCK} +150	ns

注 1: C是 SCLKp、SDOp 输出线的负载电容。

注意:通过端口输入模式寄存器和端口输出模式寄存器,将 SDIp 引脚和 SCLKp 引脚选择为通常的输入 缓冲器并且将 SDOp 引脚选择为通常的输出模式。

备注:由设计保证,量产不测试。

www.mcu.com.cn 53 / 71 Rev.1.0.1

(4) 四线 SPI 模式(从属模式,外部时钟输入)

 $(T_{A}=-40\sim125^{\circ}C, 2.0V\leq VDD\leq5.5V, V_{SS}=GND=0V)$

项目 符号		Ø III-		-40~85°C		85~125°C		单位
项目	秋日 竹ち 		条件	最小值	最大值	最小值	最大值	半亚
SSI00 建立时间 T _{SSIK}	DAPmn=0	2.7V ≤VDD ≤ 5.5V	120	1	240	-	ns	
	DAFIIII=0	2.0V ≤VDD ≤ 5.5V	200	ı	400	-	ns	
	TSSIK	DAPmn=1	2.7V ≤VDD ≤ 5.5V	1/F _{MCK} +120	ı	1/F _{MCK} +240	-	ns
			2.0V ≤VDD ≤ 5.5V	1/F _{MCK} +200	-	1/F _{MCK} +400	-	ns
		DAPmn=0	2.7V ≤VDD ≤ 5.5V	1/F _{MCK} +120	1	1/F _{MCK} +240	-	ns
SSI00 保持时间 T _{KSSI}	Tuesi	DAPITITEU	2.0V ≤VDD ≤ 5.5V	1/F _{MCK} +200	ı	1/F _{MCK} +400	-	ns
	TKSSI		2.7V ≤VDD ≤ 5.5V	120	ı	240	-	ns
		DAPmn=1	2.0V ≤VDD ≤ 5.5V	200	-	400	-	ns

注意:通过端口输入模式寄存器和端口输出模式寄存器,将 SDIp 引脚和 SCLKp 引脚选择为通常的输入 缓冲器并且将 SDOp 引脚选择为通常的输出模式。

备注:由设计保证,量产不测试。

www.mcu.com.cn 54 / 71 Rev.1.0.1

(5) 简易 IIC 模式

 $(T_{A=}-40\sim125^{\circ}C, 2.0V\leqslant VDD\leqslant5.5V, V_{SS=}GND=0V)$

표미	<i>ケ</i> /₂ □	<i>∇ II</i> +	-40~85°	С	85~125°C		兴 / ÷
项目	符号	条件	最小值	最大值	最小值	最大值	单位
		$2.7V \le VDD \le 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ K}\Omega$	-	1000 ^{注 1}	-	400 ^{注 1}	KHz
SCLr 时钟 频率	F _{SCL}	$2.0V \le VDD \le 5.5V$ $C_b = 100 \text{ pF}, R_b = 3K\Omega$	-	400 ^{注 1}	-	100 ^{注 1}	KHz
		$2.0V \le VDD \le 2.7V$ $C_b = 100 \text{ pF}, R_b = 5 \text{ K}\Omega$	-	300 ^注 1	-	75 ^{注 1}	KHz
当 SCLr 为		$2.7V \le VDD \le 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ K}\Omega$	475	-	1200	-	ns
低时 保持时 T _{LOW}	$2.0V \le VDD \le 5.5V$ $C_b = 100 \text{ pF}, R_b = 3 \text{ K}\Omega$	1150	-	4600	-	ns	
[P]		$2.0V \le VDD \le 2.7V$ $C_b = 100 \text{ pF}, R_b = 5 \text{ K}\Omega$	1550	-	6500	-	ns
当 SCLr 为		$2.7V \le VDD \le 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7K\Omega$	475	-	1200	-	ns
高时 保持时	T _{HIGH}	$2.0V \le VDD \le 5.5V$ $C_b = 100 \text{ pF}, R_b = 3 \text{ K}\Omega$	1150	-	4600	-	ns
间		$2.0V \le VDD \le 2.7V$ $C_b = 100 \text{ pF}, R_b = 5 \text{ K}\Omega$	1550	-	6500	-	ns
		$2.7V \le VDD \le 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ K}\Omega$	1/F _{MCK} +85 ^{注2}	-	1/F _{MCK} +220 ^{注2}	-	ns
数据建立时 间(接收)	T _{SU:}	$2.0V \le VDD \le 5.5V$ $C_b = 100 \text{ pF}, R_b = 3 \text{ K}\Omega$	1/F _{MCK} +145 ^{注 2}	-	1/F _{MCK} +580 ^{注 2}	-	ns
		$2.0V \le VDD \le 2.7V$ $C_b = 100 \text{ pF}, R_b = 5 \text{ K}\Omega$	1/F _{MCK} +230 ^{注 2}	-	1/F _{MCK} +1200 ^注 2	-	ns
27 (11) 24 2		$2.7V \le VDD \le 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7K\Omega$	-	305	-	770	ns
	T _{HD} .	$2.0V \le VDD \le 5.5V$ $C_b = 100 \text{ pF}, R_b = 3K\Omega$	-	355	-	1420	ns
		$2.0V \le VDD \le 2.7V$ $C_b = 100 \text{ pF}, R_b = 5K\Omega$	-	405	-	2070	ns

注 1: 必须至少设定为 FMCK/4。

注 2: FMCK的设定值不能超过 SCLr="L" 和 SCLr="H" 的保持时间。

备注:由设计保证,量产不测试。

www.mcu.com.cn 55 / 71 Rev.1.0.1

7.7.2 串行接口 IICA

1) I²C 标准模式

 $(T_{A}=-40\sim125^{\circ}C, 2.0V\leq VDD\leq5.5V, V_{SS}=GND=0V)$

项目	符号	条件	规村	各值	单位	
坝日	15 5	新 什	最小值	最大值	丰瓜	
SCLA0 时钟频率	F _{SCL}	标准模式: Fclk≥1MHz	-	100	KHz	
启动条件的建立时间	T _{SU: STA}	-	4.7	-	us	
启动条件的保持时间 ^{注1}	T _{HD:} STA	-	4.0	-	us	
当 SCLA0 为低时 保持时间	T _{LOW}	-	4.7	-	us	
当 SCLA0 为高时 保持时间	T _{HIGH}	-	4.0	-	us	
数据建立时间(接收)	T _{SU: DAT}	-	250	-	ns	
数据保持时间(发送) ^{注2}	T _{HD: DAT}	-	0	3.45	us	
停止条件的建立时间	T _{SU: STO}	-	4.0	•	us	
总线空闲时间	T _{BUF}	-	4.7	-	us	

注 1: 在产生开始条件或重新开始条件后生成第一个时钟脉冲。

注 2: 在正常传送期间需要保证 THD: DAT 的最大值,在进行应答(ACK)时需要等待。

注意: 各模式的 Cb (通信线电容)的最大值和此时的 Rb (通信线的上拉电阻值)的值如下:

标准模式: Cb=400pF、Rb=2.7KΩ

备注:由设计保证,量产不测试。

2) I²C 快速模式

 $(T_A=-40\sim125^{\circ}C , 2.0V \leq VDD \leq 5.5V, V_{SS}=GND=0V)$

项目	符号	条件	规村	各值	单位	
- 坝日 -	1寸写	余件	最小值	最大值	半江	
SCLA0 时钟频率	F _{SCL}	快速模式: F _{CLK} ≥3.5MHz		400	KHz	
启动条件的建立时间	T _{SU:} STA	-	0.6	-	us	
启动条件的保持时间 ^{注1}	T _{HD:} STA	-	0.6	-	us	
当 SCLA0 为低时 保持时间	T _{LOW}	-	1.3	-	us	
当 SCLA0 为高时 保持时间	T _{HIGH}	-	0.6	-	us	
数据建立时间(接收)	T _{SU: DAT}	-	100	-	ns	
数据保持时间(发送) ^{注2}	T _{HD: DAT}	-	0	0.9	us	
停止条件的建立时间	T _{SU:} STO	-	0.6	-	us	
总线空闲时间	T _{BUF}	-	1.3	-	us	

注 1: 在产生开始条件或重新开始条件后生成第一个时钟脉冲。

注 2: 在正常传送期间需要保证 THD: DAT 的最大值,在进行应答(ACK)时需要等待。

注意: 各模式的 Cb (通信线电容)的最大值和此时的 Rb (通信线的上拉电阻值)的值如下:

快速模式: C_b=320pF、R_b=1.1KΩ

备注:由设计保证,量产不测试。

www.mcu.com.cn 56 / 71 Rev.1.0.1

3) I2C 增强型快速模式

 $(T_{A=}-40\sim125^{\circ}C, 2.0V\leq VDD\leq5.5V, V_{SS}=GND=0V)$

项目	符号	条件	规	格值	单位
坝日	10 5	紫	最小值	最大值	半世
SCLA0 时钟频率	F _{SCL}	增强型快速模式: Fclκ≥10MHz	-	1000	KHz
启动条件的建立时间	T _{SU: STA}	-	0.26	-	us
启动条件的保持时间 ^{注1}	T _{HD: STA}	-	0.26	-	us
当 SCLA0 为低时 保持时间	T _{LOW}	-	0.5	-	us
当 SCLA0 为高时 保持时间	T _{HIGH}	-	0.26	1	us
数据建立时间 (接收)	T _{SU: DAT}	-	50	1	ns
数据保持时间(发送) ^{注2}	T _{HD: DAT}	-	0	0.45	us
停止条件的建立时间	T _{SU:} STO	-	0.26	•	us
总线空闲时间	T _{BUF}	-	0.5	-	us

注 1: 在产生开始条件或重新开始条件后生成第一个时钟脉冲。

注 2: 在正常传送期间需要保证 THD: DAT 的最大值,在进行应答(ACK)时需要等待。

注意: 各模式的 C_b (通信线电容)的最大值和此时的 R_b (通信线的上拉电阻值)的值如下: 增强型快速模式: C_b =120pF、 R_b =1.1K Ω

备注:由设计保证,量产不测试。

www.mcu.com.cn 57 / 71 Rev.1.0.1

7.8 模拟特性

7.8.1 A/D 转换器特性

A/D 转换器特性的区分

基准电压输入通道	基准电压(+)=AV _{REFP} 基准电压(-)=AV _{REFM}	基准电压(+)=VDD 基准电压(-)=Vss
ANI0~ANI15	会四 7 0 1 (1)	会四 7 9 4 (2)
内部基准电压,温度传感器的输出电压	参照 7.8.1(1)	参照 7.8.1(2)

(1) 选择基准电压(+)=AV_{REFP}/ANIO、基准电压(-)=AV_{REFM}/ANI1的情况 (T_A= -40~125°C、2.0V≤AV_{REFP}≤VDD≤5.5V、V_{SS}=0V、基准电压(+)=AV_{REFP}、

基准电压(-)= AV_{REFM} =0V)

项目	符号	条件	条件		典型值	最大值	单位
分辨率	RES	-		-	12	-	bit
综合误差 ^{注1}	ET	12位分辨率	位分辨率 2.0V ≤ AV _{REFP} ≤ 5.5V		3	ı	LSB
零刻度误差 ^{注1}	Ezs	12位分辨率	2.0V ≤AV _{REFP} ≤ 5.5V	-	0	-	LSB
满刻度误差 ^{注1}	E _{FS}	12位分辨率	2.0V ≤AV _{REFP} ≤ 5.5V	-	0	-	LSB
积分线性误差 ^{注1}	EL	12位分辨率	2.0V ≤AV _{REFP} ≤ 5.5V	-1	-	1	LSB
微分线性误差 ^{注1}	ED	12位分辨率	2.0V ≤AV _{REFP} ≤ 5.5V	-1.5	-	1.5	LSB
		12位分辨率 转换对象: ANI2~ANI15	2.0V ≤VDD≤ 5.5V	45	-	ı	1/F _{ADC}
转换时间 ^{注3} T _{CONV}	TCONV	12 位分辨率 转换对象:内部基准电 压、温度传感器的输出电 压、PGA 输出电压	2.0V ≤VDD≤ 5.5V	72	-	ı	1/F _{ADC}
外部输入电阻	RAIN	RAIN < (Ts / (FADC x CADC)	x In (2 ¹²⁺²)) - R _{ADC})	-	10 ^{注4}	-	ΚΩ
采样开关电阻	RADC	-		-	-	1.5	ΚΩ
采样保持电容	C _{ADC}	-		-	2	-	pF
	Vain	ANI2~ANI15		0	-	AV_REF	V
模拟输入电压		内部基准电压(2.0V≤VDD≤5.5V)		V _{BGR} ^{注2}			V
		温度传感器的输出电压(2.0	OV≪VDD≪5.5V)		V _{TMPS25} ^{注2}		V

- 注1: 不包含量化误差(±1/2 LSB)。
- 注2: 请参照"7.8.2温度传感器/内部基准电压的特性"。
- 注3: FADC为AD的动作频率,最大动作频率为48MHz。
- 注4:由设计保证,量产不测试。典型值为默认采样周期Ts=13.5,转换速度为F_{ADC}=48MHz条件下的计算值。

www.mcu.com.cn 58 / 71 Rev.1.0.1

(2) 选择基准电压(+)=VDD、基准电压(-)=Vss的情况

(T_A= -40~125°C、 2.0V≤VDD≤5.5V、V_{SS}=GND=0V、基准电压(+)=VDD、

基准电压(-)=Vss)

Z/F:0/2	- ()							
项目	符号	条件		最小值	典型值	最大值	单位	
分辨率	RES	-		-	12	-	bit	
综合误差 ^{注1}	ET	12位分辨率	2.0V ≤AV _{REFP} ≤5.5V	-	6	-	LSB	
零刻度误差 ^{注1}	E _{zs}	12位分辨率	2.0V ≤AV _{REFP} ≤5.5V	-	0	-	LSB	
满刻度误差 ^{注1}	E _{FS}	12位分辨率	2.0V ≤AV _{REFP} ≤5.5V	-	0	-	LSB	
积分线性误差 ^{注1}	EL	12位分辨率	2.0V ≤AV _{REFP} ≤5.5V	-2	-	2	LSB	
微分线性误差 ^{注1}	ED	12位分辨率	2.0V ≤AV _{REFP} ≤5.5V	-3	ı	3	LSB	
		12位分辨率 转换对象: ANIO~ANI15	2.0V≤VDD≤5.5V	45	-	-	1/F _{ADC}	
转换时间 ^{注3}	TCONV	12位分辨率 转换对象:内部基准电压、 温度传感器的输出电压、 PGA输出电压	2.0V≤VDD≤5.5V	72	ı	-	1/Fadc	
外部输入电阻	RAIN	RAIN < (Ts/(FADC x CADC)	$(\ln (2^{12+2})) - R_{ADC})$	-	10 ^{注4}	-	ΚΩ	
采样开关电阻	RADC	-		-	-	1.5	ΚΩ	
采样保持电容	CADC	-		-	2	-	pF	
		ANI0~ANI7	ANI0~ANI7		-	VDD	V	
描划绘》中区	VAIN	ANI8~ANI15	ANI8~ANI15		-	VDD	V	
模拟输入电压	V AIN	内部基准电压(2.0V≤VDD	内部基准电压(2.0V≤VDD≤5.5V)		V _{BGR} ^注 2			
		温度传感器的输出电压(2.0	温度传感器的输出电压(2.0V≤VDD≤5.5V)			V™PS25 ^{注2}		

注1: 不包含量化误差(±1/2 LSB)。

注2: 请参照"7.8.2温度传感器/内部基准电压的特性"。

注3: FADC为AD的动作频率,最大动作频率为48MHz。

注4: 由设计保证,量产不测试。典型值为默认采样周期T_S=13.5,转换速度为F_{ADC}=48MHz条件下的计算值。

www.mcu.com.cn 59 / 71 Rev.1.0.1

7.8.2 温度传感器/内部基准电压的特性

 $(T_{A}=-40\sim125^{\circ}C\ ,\ 2.0V\leqslant VDD\leqslant5.5V\ ,\ V_{SS}=GND=0V)$

项目	符号	条件	最小值	典型值	最大值	单位
温度传感器的输出电压	V _{TMPS25}	T _A =25°C	-	1.09	-	V
	V _{BGR}	T _A = -40~10°C	1.25	1.45	1.65	V
内部基准电压		T _A =10~70°C	1.38	1.45	1.52	V
		T _A =70~125°C	1.35	1.45	1.55	V
温度系数	F _{VTMPS}	-	-	-3.5	-	mV/°C
运行稳定等待时间	T _{AMP}	-	5	-	-	us

备注: 低温规格值由设计保证,量产不测低温条件。

7.8.3 D/A 转换器

 $(T_{A}=-40~125^{\circ}C, 2.0V \leq VDD \leq 5.5V, V_{SS}=GND=0V)$

	VIX 10 1=00 =101 11=1 1010 1 100 011= 011							
项目	符号	条件			典型值	最大值	单位	
分辨率	RES	-	-	-	-	8	bit	
综合误差	ET	Rload=4MΩ	2.0V≤VDD≤5.5V	-2.5	-	2.5	LSB	
稳定时间	T _{SET}	T _{SET} Cload=20pF	2.7V≤VDD≤5.5V	-	-	3	us	
念 是則則			2.0V≤VDD<2.7V	-	-	6	us	
输出阻抗	RO	Rload=4MΩ	2.0V≤VDD≤5.5V	4.7	-	8	ΚΩ	

备注: 低温规格值由设计保证,量产不测低温条件。

7.8.4 比较器

 $(T_{A}=-40\sim125^{\circ}C, 2.0V \leq VDD \leq 5.5V, V_{SS}=GND=0V)$

项目	符号		最小值	典型值	最大值	单位	
输入失调电压	Voffset		-	±10	±40	mV	
输入电压范围	VIN		-	0	-	VDD	V
内部基准电压偏差	ΔV_IREF	CmRVM 寄存器: 7	7FH~80H (m=0,1)	-	-	±2	LSB
内部举作电压闸左		其他		-		±1	LSB
响应时间	T _{CR} , T _{CF}	输入振幅±100mV		-	70	125	ns
运行稳定时间 ^{注1}	T _{STB}	CMPn=0->1	VDD =3.3~5.5V	-	-	1	110
色打念在时间	ISIB	CIVIFTI=0-/1	VDD =2.0~3.3V	-	-	3	us
基准电压稳定时间	T _{VR}	CVRE=0->1 ^{½2}		-	-	20	us
工作电流 ICMPDD 参照 7.5.2 电源电流特性							

注1: 从比较器动作使能(CMPnEN=0 —>1)到满足CMP的各项DC/AC式样要求所需要的时间。

注2: 内部基准电压发生器使能(将CVREm位设置为1; m=0 to 1)后,经过基准电压稳定时间,才可以使能比较器输出(CnOE bit = 1; n=0 to 1)

备注:由设计保证,量产不测试。

www.mcu.com.cn 60 / 71 Rev.1.0.1

7.8.5 可编程增益放大器 PGA

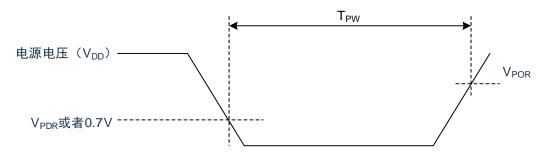
 $(T_{A}=-40\sim125^{\circ}C\ ,\ 2.0V\leqslant VDD\leqslant5.5V\ ,\ V_{SS}=GND=0V)$

参数	符号	2.00 < 000 < 0	<u></u>	最小值	典型值	最大值	单位
输入偏差电压	VIOPGA		-	-	±3	±10	mV
输入电压范围	V _{IPGA}		-	0	-	0.9xVDD / Gain	٧
松山中口井田	VIOHPGA		-	0.93xVDD	-	-	V
输出电压范围	VIOLPGA	-		-	-	0.07xVDD	V
		x4	-	-	-	±1	%
		x8	-	-	-	±1	%
		x10	-	-	-	±1	%
增益偏差	EG	x12	-	-	-	±2	%
		x14	-	-	-	±2	%
		x16	-	-	-	±2	%
		x32	-	-	-	±3	%
		上升 Vin= 0.1VDD/gain to 0.9VDD/gain.	4.0 V ≤VDD≤ 5.5 V (除 x32)	3.5	-	-	
	SR _{RPGA}		4.0 V ≤VDD≤ 5.5 V (x32)	3.0	-	-	
+ ********************************		10 to 90%输出 电压幅度	2.0 V ≤VDD≤ 4.0V	0.5	-	-	\// ₁ =
转换速率 ^{注2}		下降 Vin=	4.0 V ≤ VDD≤ 5.5 V (除 x32)	3.5	-	-	V/us
	SR _{FPGA}	0.1VDD/gain to 0.9VDD/gain.	4.0 V ≤VDD≤ 5.5 V (x32)	3.0	-	-	
		90 to 10%输出 电压幅度	2.0 V ≤VDD≤ 4.0V	0.5	-	-	
		x4	-	-	-	5	us
		x8	-	-	-	5	us
\= \(= 4 = 44 + 44		x10	-	-	-	5	us
运行稳定 时间 ^{注1}	T _{PGA}	x12	-	-	-	10	us
E 1 1€1		x14	-	-	-	10	us
		x16	-	-	-	10	us
		x32	-	-	-	10	us
工作电流	I _{PGADD}	参照 7.5.2 电源电	流特性				

注1:从PGA动作使能(PGAEN=1)到满足PGA的各项DC和AC式样要求所需要的时间。

注2: 由设计保证,量产不测试。

www.mcu.com.cn 61 / 71 Rev.1.0.1



7.8.6 POR 电路特性

 $(T_{A}=-40\sim125^{\circ}C, V_{SS}=0V)$

项目	符号	条件	最小值	典型值	最大值	单位
检测电压	V _{POR}	电源电压上升时	-	1.50	2.0	V
位测电压	V _{PDR}	电源电压下降时	1.37	1.45	-	V
最小脉宽 ^{注1}	T _{PW}	-	300	-	1	us

注1: 这是在VDD低于V_{PDR}时POR复位所需的时间。另外,在深度睡眠 模式中通过设定时钟运行状态控制 寄存器(CSC)的bit0(HIOSTOP)和bit7(MSTOP)停止主系统时钟(F_{MAIN})的振荡时,是从 VDD低于0.7V到回升超过V_{POR}为止的POR复位所需的时间。

备注:由设计保证,量产不测试。

www.mcu.com.cn 62 / 71 Rev.1.0.1

7.8.7 LVD 电路特性

(1) 复位模式、中断模式

 $(T_A = -40 \sim 125^{\circ}C, V_{PDR} \leq VDD \leq 5.5V, V_{SS} = 0V)$

项目	符号	条件	最小值	典型值	最大值	单位
	V _{LVD0}	电源电压上升时	-	4.06	4.26	V
	V LVD0	电源电压下降时	3.78	3.98	ı	V
	\/	电源电压上升时	-	3.75	1	V
	V _{LVD1}	电源电压下降时	-	3.67	1	V
检测电压	V _{LVD2}	电源电压上升时	-	3.02	-	V
沙州电压	V LVD2	电源电压下降时	-	2.96	-	V
	\/	电源电压上升时	-	2.71	-	V
	V _{LVD3}	电源电压下降时	-	2.65	-	V
	V_{LVD4}	电源电压上升时	-	2.09	2.16	V
	V LVD4	电源电压下降时	1.97	2.04	-	V
最小脉宽	T _{LW}	-	300	-	-	us
检测延迟	-	-	-	-	300	us

备注:由设计保证,量产不测试。

(2) 中断 & 复位模式

 $(T_{A}=-40\sim125^{\circ}C, V_{PDR} \leq VDD \leq 5.5V, V_{SS}=0V)$

项目	符号		条件		最小值	典型值	最大值	单位
	V _{LVDB0}	V _{POC2} =0	下降复位电压		1.78	1.84	-	V
	V _{LVDB2}	V _{POC1} =0 V _{POC0} =1	LVIS1=0	上升复位解除电压	-	2.09	2.16	V
			LVIS0=1	下降中断电压	1.97	2.04	-	V
	VLVDC0		下降复位电压		-	2.45	-	V
	.,	V _{POC1} =1 V _{POC0} =0	LVIS1=0 LVIS0=1	上升复位解除电压	-	2.71	-	V
	VLVDC2			下降中断电压	-	2.65	-	V
中断 & 复位模式	V _{LVDC3}		LVIS1=0 LVIS0=0	上升复位解除电压	-	3.75	-	V
				下降中断电压	-	3.67	-	V
	VLVDD0		下降复位电压			2.75	-	V
	\	V _{POC2} =0	LVIS1=0	上升复位解除电压	-	3.02		V
	VLVDD2	V _{POC1} =1	LVIS0=1	下降中断电压	-	2.96		V
	VLVDD3	V _{POC0} =1	LVIS1=0	上升复位解除电压	-	4.06	4.26	V
		LVIS0=0	下降中断电压	3.78	3.98	-	V	

备注:由设计保证,量产不测试。

7.8.8 复位时间与电源电压的上升斜率特性

 $(T_A = -40 \sim 125^{\circ}C_{\circ} V_{SS} = 0V)$

(1 / 10 1 2 0 0 (****					
项目	符号	条件	最小值	典型值	最大值	单位
复位时间	T _{RESET}	-	-	1	-	ms
电源电压的上升斜率	S _{VDD}	-	-	-	54	V/ms

备注:由设计保证,量产不测试。

www.mcu.com.cn 63 / 71 Rev.1.0.1

7.9 LIN 收发器特性

7.9.1 极限参数

参数	符号	测试条件	值	单位
电源电压	V _{BAT}	对地电位	-0.3 ~ +40	V
	V_{Cap}	对地电位	-0.3~ +7	V
	V _{RXD}	对地电位	-0.3~ V _{Cap} +0.3	V
引脚电压	V _{EN}	对地电位	-0.3~ V _{Cap} +0.3	V
71744年上	V _{RSTN}	对地电位	-0.3~ V _{Cap} +0.3	V
	V _{TXD}	对地电位	-0.3~ V _{Cap} +0.3	>
	V _{LIN}	对地对 V _{BAT} 电位	-40~ +40	V
结温	Tj	-	-40 ~ 150	°C
储存温度	T _{stg}	-	-55 ~ 150	°C

注意:最大极限参数值指超过该值时可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有电压的参考点为地。

www.mcu.com.cn 64 / 71 Rev.1.0.1

7.9.2 直流特性

参数	符号	测试条件	最小值	典型值	最大值	单位
功耗						
		休眠模式: (VLIN=VBAT)	-	10	-	μA
		待机模式: (V _{LIN} =V _{BAT})	-	40	220	μA
VBAT 引脚上消耗的电流	I _{BAT}	正常模式(隐性): (VLIN=VBAT; VTXD=VCC; VRSTN=HIGH)	-	200	600	μΑ
		正常模式(显性): (V _{BAT} =12V; V _{TXD} =0V; V _{RSTN} =HIGH)	-	2.5	4	mA
上电复位						
VBAT 掉电阈值电压	$V_{\text{th(BAT)L}}$	-	3	-	4.7	V
VBAT 上电阈值电压	V _{th(BAT)H}	-	-	-	5.25	V
V _{BAT} 迟滞电压	V _{hys(BAT)}	-	50	-	-	mV
V _{Cap} 引脚						
稳压源输出电压	Vcc	V _{Ccap(nom)} =5V; I _{Cap} =-70mA~0	4.9	5	5.1	V
稳压源输出限流	lolim	V _{Cap} =0 ~ 5.5V	-250	-	-70	mA
掉电检测电压	V _{UVD}	V _{Cap(nom)} =5V	4.2	-	4.6	V
掉电恢复电压	V _{UVR}	V _{Cap(nom)} =5V	4.6	-	4.9	V
V _{BAT} 至 V _{Cap} 导通电阻	R _(VBAT-Vcap) [1]	$V_{Cap(nom)} = 5 \text{ V};$ $V_{BAT} = 4.5 \text{V} \sim 5.5 \text{V}$ $I_{V1} = -70 \text{ mA} \sim -5 \text{mA}$	-	-	5	Ω
输出电容	Co ^[1]	ESR < 5Ω	2.2	10	-	μF
TXD 引脚						
输入阈值电压	$V_{th(SW)}$	V _{Cap} = 2.97V~5.5V	0.3Vcc	-	0.7Vcc	V
输入迟滞电压	V _{hys(i)}	V _{Cap} = 2.97V~5.5V	200	-	-	mV
上拉电阻	R _{pu}	-	5	12	25	kΩ
RXD 引脚						
高电平输出电流	Іон	正常模式 V _{LIN} = V _{BAT} ; V _{RXD} = V _{Cap} - 0.4V	-	-	-0.4	mA
低电平输出电流	loь	正常模式 V _{LIN} = 0; V _{RXD} = 0.4V	0.4	-	-	mA
EN引脚						
输入阈值电压	V _{th(SW)}	-	0.8	-	2	V
下拉电阻	R _{pd}	-	50	130	400	ΚΩ
RSTN 引脚						
上拉电阻	R _{pu}	V _{RSTN} =V _{Cap} -0.4V V _{Cap} =2.97V~5.5V	3	-	12	kΩ
低电平输出电流	loL	V _{RSTN} =0.4V V _{Cap} =2.97V~5.5V -40°C <tj<195°c< td=""><td>3.2</td><td>-</td><td>40</td><td>mA</td></tj<195°c<>	3.2	-	40	mA

低电平输出电压	VoL	V _{Cap} =2.5V~5.5 V -40°C <tj<195°c< td=""><td>0</td><td>-</td><td>0.5</td><td>٧</td></tj<195°c<>	0	-	0.5	٧	
高电平输出电压	V _{OH}	-40°C <tj<195°c< td=""><td>0.8V_{CC}</td><td>-</td><td>V_{CC}+0.3</td><td>V</td></tj<195°c<>	0.8V _{CC}	-	V _{CC} +0.3	V	
LIN引脚							
驱动器显性限流	I _{BUS_LIM}	V _{TXD} =0V; V _{LIN} =V _{BAT} =18V	40	-	100	mA	
接收器隐性输入漏电流	BUS_PAS_rec	V _{TXD} =V _{cap} ; V _{LIN} =18V; V _{BAT} =5.5V	-	-	20	μА	
接收器显性输入漏电 流	IBUS_PAS_dom	正常模式; V _{TXD} =V _{cap} ; V _{LIN} =0V; V _{BAT} =12V	-1000	-	-	μA	
总线对地漏电流	IL _(log)	V _{BAT} =18V; VLIN=0V	-1000	-	10	μA	
总线对电源漏电流	IL _(lob)	V _{BAT} =0V; VLIN=18V	-	-	20	μA	
接收器显性翻转阈值 电压	V _{th(dom)RX}	V _{BAT} =5.5V~18V	-	-	0.4V _{BAT}	V	
接收器隐性翻转阈值 电压	V _{th(rec)RX}	V _{BAT} =5.5V~18V	0.6V _{BAT}	-	-	V	
接收器中心翻转阈值 电压	V _{th(RX)cntr}	$V_{BAT}=5.5V\sim18V$ $V_{th(RX) cntr}=$ $(V_{th(rec)RX} + V_{th(dom)RX})/2$	0.475V _{BAT}	0.5V _{BAT}	0.525V _{BAT}	V	
接收器迟滞阈值电压	V _{th(hys)RX}	V _{BAT} =5.5V~18V V _{th(hys)RX} =V _{th(rec)RX} - V _{th(dom)RX}	-	-	0.175V _{BAT}	V	
从机电阻	R _{slave}	LIN和V _{BAT} 之间的等效电阻; V _{LIN} = 0V; V _{BAT} =12V	20	30	60	ΚΩ	
LIN 引脚等效电容	C _{LIN} [1]	-	-	-	30	pF	
目性於山中区	V	正常模式; V _{TXD} =0V; V _{BAT} =7V	-	-	1.4	V	
显性输出电压	V _{o(dom)}	正常模式; V _{TXD} =0V; V _{BAT} =18V	1	-	2.0	V	
热关断	热关断						
关断结温	T _{j(sd)} [1]	-	150	180	200	°C	

(如无另外说明,5.5V≤V_{BAT}≤28V,-40°C≤T_j≤150°C,典型值在 V_{BAT}=12V,T_j=25°C 情况下。) [1]设计值保证,非测试结果。

www.mcu.com.cn 66 / 71 Rev.1.0.1

7.9.3 开关特性

参数	符号	测试条件	最小值	典型值	最大值	单位
占空比						
Frida 4	54 (410)	Vth(rec)(max)=0.744×VBAT; Vth(dom)(max)=0.581×VBAT; t _{bit} =50µs; V _{BAT} =7V~18V	0.396	-	-	-
占空比 1	δ1 [1][2]	Vth(rec)(max)=0.76×VBAT; Vth(dom)(max)=0.593×VBAT; t _{bit} =50µs; V _{BAT} =5.5V~7V	0.396	-	-	-
		Vth(rec)(min)=0.422×VBAT; Vth(dom)(min)=0.284×VBAT; t _{bit} =50µs; V _{BAT} =7.6V~18V	-	-	0.581	-
占空比 2	δ2 [2][3]	$\label{eq:Vth(rec)(min)=0.41} Vth(rec)(min)=0.41 \times VBAT; \\ Vth(dom)(min)=0.275 \times VBAT; \\ t_{bit}=50 \mu s; \\ V_{BAT}=6.1 V \sim 7.6 V$	-	1	0.581	-
上穴 1/2	δ3 [1][2]	Vth(rec)(max)=0.778×VBAT; Vth(dom)(max)=0.616×VBAT; t _{bit} =96µs; V _{BAT} =7V~18V	0.417	-	-	-
占空比3		Vth(rec)(max)=0.797×VBAT; Vth(dom)(max)=0.630×VBAT; t _{bit} =96µs; V _{BAT} =5.5V~7V	0.417	-	-	-
占空比 4	δ4 [2][3]	Vth(rec)(min)=0.389×VBAT; Vth(dom)(min)=0.251×VBAT; t _{bit} =96µs; V _{BAT} =7.6V~18V	-	-	0.590	-
		$\label{eq:Vth(rec)(min)=0.378xVBAT;} $$V$th(dom)(min)=0.242xVBAT;$$$t_{bit}=96\mu s;$$$V_{BAT}=6.1V\sim7.6V$$	-	1	0.590	-
时序特性						
接收器传播延时 t PD(RX) [4]		-	-	-	6	μs
接收器传播延时对 称性		-	-2	-	2	μs
LIN 的显性唤醒时 间(远程唤醒) t _{wake(dom)LIN}		休眠模式	30	65	150	μs
WAKE_N 的显性唤 醒时间 twake(dom)WAKE_N (本地唤醒)		休眠模式	7	22	50	μs
进入正常模式时间	t _{gotonorm}	-	2	5	10	μs
进入休眠模式时间	t _{gotosleep}	-	2	5	10	μs
TXD 显性超时时间	$t_{to(dom)TXD}$	V _{TXD} =0V	27	52	90	ms

(如无另外说明,5.5V≤V_{BAT}≤27V, -40°C≤T_{Vj}≤150°C,典型值在 V_{BAT}=12V,T_{Vj}=25°C 情况下。)

- 1) $\delta 1$, $\delta 3 = \frac{t_{\text{bus(rec)(min)}}}{2 \times t_{\text{bit}}}$
- 2) 总线负载: (1) CL=1nF, RL=1kΩ; (2) CL=6.8nF, RL=660Ω; (3) CL=10nF, RL=500Ω
- 3) $\delta 2$, $\delta 4 = \frac{t_{\text{bus(rec)(max)}}}{2 \times t_{\text{bit}}}$
- 4) 接收器输出引脚 RXD 负载情况: C_{TXD}=20pF, R_{RXD}=2.4kΩ

www.mcu.com.cn 67 / 71 Rev.1.0.1

7.10 存储器特性

7.10.1 Flash 存储器

 $(T_{A}=-40\sim125^{\circ}C, 2.0V \leq VDD \leq 5.5V, V_{SS}=GND=0V)$

符号	参数	测试条件	最小值	最大值	单位
T _{PROG}	字写入时间(32bit)	T _A = -40~125°C	24	30	us
T _{ERASE}	扇区擦除时间	T _A = -40~125°C	4	5	ms
	片擦除时间	T _A = -40~125°C	20	40	ms
N _{END}	可擦写次数	T _A = -40~125°C	100	-	千次
T _{RET}	数据保存期限	100 千次 ^{注1} at T _A =125℃	20	-	年

注1: 循环测试在整个温度范围内进行。

备注:由设计保证,量产不测试。

7.10.2 RAM 存储器

 $(T_A = -40 \sim 125^{\circ}C, 2.0V \leq VDD \leq 5.5V, V_{SS} = GND = 0V)$

符号	参数	测试条件	最小值	最大值	单位
VRAMHOLD	RAM 保持电压	T _A = -40~125°C	0.8	-	V

备注:由设计保证,量产不测试。

www.mcu.com.cn 68 / 71 Rev.1.0.1

7.11 EMS 特性

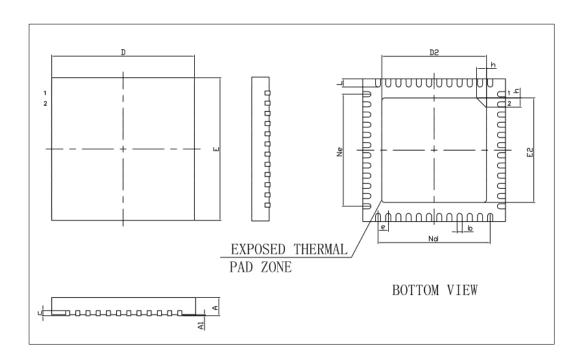
7.11.1 ESD 电气特性

符号	参数	测试条件	等级
Vesd(HBM)	静电放电 (人体放电模式 HBM)	AEC-Q100-002 Rev-E: 2013	3A

备注:由设计保证,量产不测试。

7.11.2 Latch-up 电气特性

符号	参数	测试条件	等级
LU	Static latch-up class	AEC-Q100-004 Rev-D: 2012	Class A (T _A = 125°C)


备注:由设计保证,量产不测试。

www.mcu.com.cn 69 / 71 Rev.1.0.1

8 封装信息

8.1 QFN48 (6x6mm, 0.4mm)

Coursels of		Millimeter			
Symbol	Min	Nom	Max		
А	0.70	0.75	0.80		
A1	-	0.02	0.05		
b	0.15	0.20	0.25		
С	0.18	0.20	0.23		
D	5.90	6.00	6.10		
D2	4.10	4.20	4.30		
е		0.40BSC			
Ne		4.40BSC			
Nd		4.40BSC			
Е	5.90	6.00	6.10		
E2	4.10	4.20	4.30		
L	0.35	0.40	0.45		
h	0.30	0.35	0.40		

注意: 封装尺寸不包括模的毛边凸起或门毛刺。

www.mcu.com.cn 70 / 71 Rev.1.0.1

9 版本历史

版本	日期	修订内容	
V1.0.0	2025年5月	正式版本	
V1.0.1	2025年6月	删除6.27章节有误内容	

www.mcu.com.cn 71 / 71 Rev.1.0.1