

SC8P115xA user manual

IO type OTP MCU

Rev. 1.3.1

Please be reminded about following CMS’s policies on intellectual property

＊Cmsemicron Limited(denoted as ‘our company’ for later use) has already applied for relative patents and entitled legal rights. Any patents

related to CMS’s MCU or other producrts is not authorized to use. Any individual, organization or company which infringes s our company’s
interlectual property rights will be forbidden and stopped by our company through any legal actions, and our company will claim the lost and
required for compensation of any damage to the company.

＊ The name of Cmsemicron Limited and logo are both trademarks of our company.

＊Our company preserve the rights to further elaborate on the improvements about products’ function, reliability and design in this manual.

However, our company is not responsible for any usage about this munal. The applications and their purposes in this manual are just for

clarification，our company does not guarantee that these applications are feasible without further improvements and changes，and our company

does not recommend any usage of the products in areas where people’s safety is endangered during accident. Our company’s products are not
authorzed to be used for life-saving or life support devices and systems.our company has the right to change or improve the product without

any notification，for latest news, please visit our website: www.mcu.com.cn

http://www.mcu.com.cn/

www.mcu.com.cn V1.3.1

 2 / 70

SC8P115xA series

Content

PRECAUTIONS FOR USE .. 4

1. PRODUCT OVERVIEW ... 5

1.1 FUNCTIONAL CHARACTERISTICS AND SELECTION TABLE ... 5

1.2 SYSTEM STRUCTURE BLOCK DIAGRAM .. 6

1.3 PIN ASSIGNMENT .. 7

1.4 SYSTEM CONFIGURATION REGISTER .. 8

1.5 IN-CIRCUIT SERIAL PROGRAMMING .. 9

2. CENTRAL PROCESSING UNIT（CPU） ... 10

2.1 MEMORY ... 10

2.1.1 Program memory ...10

2.1.2 Data memory ..13

2.2 ADDRESSING MODE .. 15

2.2.1 Direct addressing ...15

2.2.2 Immediate addressing mode ..15

2.2.3 Indirect addressing ...15

2.3 STACK ... 16

2.4 WORKING REGISTER（ACC） .. 17

2.4.1 General ..17

2.4.2 ACC application ...17

2.5 PROGRAM STATUS REGISTER（STATUS） ... 18

2.6 PRESCALER（OPTION_REG） .. 19

2.7 PROGRAM COUNTER（PC） .. 21

2.8 WATCHDOG COUNTER（WDT） ... 22

2.8.1 WDT cycle ..22

3. SYSTEM CLOCK .. 23

3.1 OVERVIEW ... 23

3.2 SYSTEM OSCILLATOR .. 25

3.2.1 Internal RC oscillation ..25

3.3 OSCILLATOR CONTROL REGISTER .. 25

3.4 START-UP TIME ... 25

4. RESET ... 26

4.1 POWER ON RESET .. 26

4.2 POWER DOWN RESET .. 27

4.2.1 Improvement method of power-down reset ..28

4.2.2 Watchdog reset ..29

5. SYSTEM WORKING MODE .. 30

5.1 SLEEP MODE .. 30

5.1.1 Sleep mode application example ...30

5.1.2 Wake-up from sleep mode ...31

www.mcu.com.cn V1.3.1

 3 / 70

SC8P115xA series

5.1.3 Sleep mode wake-up time ..31

6. I/O PORT ... 32

6.1 I/O PORT MODE AND PULL-UP AND PULL-DOWN RESISTORS .. 33

6.1.1 PORTB port ..33

6.2 THE USE OF I/O PORTS ... 35

6.2.1 Write I/O port ..35

6.2.2 Read I/O port ..35

6.3 I/O PORT USAGE PRECAUTIONS .. 36

7. INTERRUPT .. 37

7.1 INTERRUPT OVERVIEW .. 37

7.2 INTERRUPT CONTROL REGISTER .. 38

7.3 PROTECTION METHOD OF INTERRUPT SITE .. 39

7.3.1 Considerations for External Interrupts ..40

7.4 INTERRUPT PRIORITY AND INTERRUPT NESTING .. 40

8. TIMER TMR0 ... 41

8.1 TMR0 OVERVIEW ... 41

8.2 TMR0 RELATED REGISTERS .. 42

8.3 USING AN EXTERNAL CLOCK AS THE CLOCK SOURCE FOR TMR0 .. 43

8.4 APPLICATION OF TMR0 AS TIMER .. 44

8.4.1 Basic time constant of TMR0 ...44

8.5 TMR0 OPERATION PROCEDURE ... 45

9. GENARAL PWM ... 46

9.1 GENERAL PWM OVERVIEW ... 46

9.2 REGISTERS RELATED TO GENERAL PWM .. 47

9.3 9.3 PERIOD AND DUTY CYCLE OF GENERAL PWM .. 49

9.3.1 General PWM output period ...49

9.3.2 General PWM duty cycle algorithm ..49

9.4 GENERAL PWM APPLICATIONS .. 49

10. ELECTRICAL PARAMETERS .. 50

10.1 DC CHARACTERISTIC .. 50

10.2 LVR ELECTRICAL CHARACTERISTICS .. 50

10.3 AC CHARACTERISTICS .. 51

11. INSTRUCTIONS .. 52

11.1 LIST OF INSTRUCTIONS .. 52

11.2 INSTRUCTION DESCRIPTION ... 54

12. PACKAGING ... 68

12.1 SOT23-6 .. 68

12.2 SOP8 ... 69

13. VERSION REVISION INSTRUCTIONS ... 70

www.mcu.com.cn V1.3.1

 4 / 70

SC8P115xA series

Precautions for use

Serial number Precautions

1 PB3 pull-up is enabled, PB3 is floating, and the voltage of PB3 is about 0.7VDD.

2
PB3 input level: TA=25℃, VDD=5V, pull-up enable: VIH=1.7V, VIL=0.9V.

 TA=25℃, VDD=5V, pull-up disabled: VIH=2.2V, VIL=1.4V.

3
PB3 pull-up
resistor:

TA=25℃, VIH=0.5VDD: RPH=36K±7K.

4 IRCF[2:0]=000:
At this time, the internal RC oscillator of the chip is stopped, and
the PWM function is disabled.

www.mcu.com.cn V1.3.1

 5 / 70

SC8P115xA series

1. Product Overview

1.1 Functional characteristics and selection table

Model SC8P1151A SC8P1152A

Pin position 6 8

Package form SOT23-6 SOP8

I/O 3+1 5+1

ROM (OTP) 1K×14Bit 1K×14Bit

RAM 48 bytes 48 bytes

External oscillation 32768 for timer 32768 for timer

Internal oscillator frequency (MHz) 8 8

Advanced PWM 0 0

Ordinary PWM 1 3

TIMER(8Bit) 1 1

External Interrupt 2 2

Internal interrupt 1 1

IO internal pull-up resistor all IO all IO

IO internal pull-down resistor All IO (except PB3) All IO (except PB3)

Wake All interrupts, watchdog All interrupts, watchdog

LVR have have

WDT have have

Stack Level 5 Level 5

Instruction 60 60

Operating Voltage 2.0V-5.5V 2.0V-5.5V

working temperature -25℃-85℃ -25℃-85℃

www.mcu.com.cn V1.3.1

 6 / 70

SC8P115xA series

1.2 System structure block diagram

1024×14

Program Memory

Instruction Reg

Instruction Decode

and Control

Timing Generation

PC

Stack1

..

Stack5

48×8

Data Memory

Addr Mux

Fsr Reg

ACCMux

ALU

VDD,GND

PWM

TIMER0

I/O PORT

Device Reset Timer

Power-on Reset

Watch Dog Timer

www.mcu.com.cn V1.3.1

 7 / 70

SC8P115xA series

1.3 Pin assignment

GND

1

2

3

6

5

4

ICSPCLK/OSCIN/PB5

VDD

VPP/PB3OSCOUT/ICSPDAT/PB4

PWM0/PB0

SC8P1151A

OSCIN/ICSPCLK/PB5

1

2

3

4

8

7

6

5

GND

PB0/PWM0

PB1/PWM1/INT

PB2/PWM2/T0CKI

VDD

OSCOUT/ICSPDAT/PB4

VPP/PB3

SC8P1152A

Pin Description:

Pin name IO type Pin description Shared pin

PB0-PB2
PB4,PB5

I/O

Programmable as: floating input port, input port with
pull-up and pull-down resistor, push-pull output port,

open-drain output port; can also be used as XT
oscillator port, external interrupt input port, level change

interrupt, timer input port, PWM output mouth.

OSCIN, OSCOUT, INT,
T2CKI, PWM0, PWM1,

PWM2

PB3 I/O
Programmable as: floating input port, input port with

pull-up resistor, open-drain output port.

VDD, GND P Power supply voltage input pin, ground pin

PWM0-PWM2 O PWM output port

OSCIN，OSCOUT I/O XT oscillator port

INT I External interrupt input port

T0CKI I TMR0 timer/counter input

www.mcu.com.cn V1.3.1

 8 / 70

SC8P115xA series

1.4 System Configuration Register

The system configuration register (CONFIG) is an OTP option for the initial conditions of the MCU. It can

only be programmed by company's programmer, and users cannot access and operate it. It contains the

following：

1. WAKEUP_TIME（Start time selection after wake up）

◆ 18ms The startup time after wake up is 18ms

◆ 9ms The startup time after wake up is 9ms

◆ 4.5ms The startup time after wake up is 4.5ms

◆ 2.25ms The startup time after wake up is 2.25ms

2. WDT（watchdog selection）

◆ ENABLE Turn on the watchdog timer

◆ DISABLE Turn off watchdog timer

3. PROTECT（encryption）

◆ DISABLE OTP codes are not encrypted

◆ ENABLE OTP code encryption

4. LVR_SEL（Low voltage detection option）

◆ 1.8V Low voltage detection voltage selection 1.8V

◆ 2.8V Low voltage detection voltage selection 2.8V

◆ DISABLE Disable low voltage detection

5. SLEEP_LVR（LVR state during sleep）

◆ ENABLE Turn on LVR after hibernation

◆ DISABLE Turn off LVR after hibernation

www.mcu.com.cn V1.3.1

 9 / 70

SC8P115xA series

1.5 In-Circuit Serial Programming

The SC8P115xA microcontroller can be serially programmed in the final application circuit. Programming

can be done simply with the following 5 wires：

⚫ Power line (VDD)

⚫ Ground wire (GND)

⚫ Data cable (DAT)

⚫ Data cable2 (DAT2)

⚫ Clock line (CLK)

⚫ High Voltage Line (VPP)

This allows users to build boards with unprogrammed devices and only program the microcontroller

before the product is shipped. So that the latest version of firmware or custom firmware can be programmed

into the microcontroller.

R1 R2

SCMCU

VDD

GND

ICSPDAT

ICSPCLK

VDD

GND

DAT

CLK

Burn/emulator signal

To general connections(such as VDD, GND, LED and BJT)

VPPVPP

PB0DAT2

Figure 1-1: Typical In-Circuit Serial Programming Connection

In the above figure, R1 and R2 are electrical isolation devices, which are often replaced by resistors. The

resistance values are as follows: R1≥4.7K, R2≥4.7K.

If the programming communication line is long, a small capacitor can be connected to the ground on the

DAT and CLK pins to increase the stability of the communication, and the capacitance value cannot be

greater than 100pF (101).

www.mcu.com.cn V1.3.1

 10 / 70

SC8P115xA series

2. Central processing unit（CPU）

2.1 Memory

2.1.1 Program memory

OTP：1K

0000H

reset vector

Program start, jump to user program

0001H

0002H

0003H

0004H interrupt vector Interrupt entry, user interrupt program

…

… general storage area User program area

…

03FDH

03FEH

03FFH

 Jump to reset vector 0000H Program ends

2.1.1.1 Reset vector (0000H)

SC8P115xA series microcontrollers have a word-length system reset vector (0000H). Has the following

three reset methods：

◆ Power-on reset

◆ Watchdog reset

◆ Low Voltage Reset (LVR)

After any of the above resets occurs, the program will resume execution from 0000H, and the system

registers will also be restored to their default values. The system reset mode can be judged according to the

contents of PD and TO flag bits in the STATUS register. The following program demonstrates how to define

the reset vector in ROM.

Example: Defining a Reset Vector

 ORG 0000H ; System reset vector

 JP START

 ORG 0010H ; User program start

START:

 … ; User program

 …

 END ; Program ends

www.mcu.com.cn V1.3.1

 11 / 70

SC8P115xA series

2.1.1.2 Interrupt vector

The interrupt vector address is 0004H. Once there is an interrupt response, the current value of the

program counter PC will be stored in the stack buffer and jump to 0004H to start executing the interrupt

service routine. All interrupts will enter the interrupt vector 0004H, and which interrupt to execute will be

determined by the user according to the bits of the interrupt request flag register. The following sample

program shows how to write an interrupt service routine.

Example: define the interrupt vector, the interrupt program is placed after the user program

 ORG 0000H ; system reset vector

 JP START

 ORG 0004H ; start of interrupt program

INT_START:

 CALL PUSH ; Save ACC and STATUS

 … ; user interrupt routine

 …

INT_BACK:

 CALL POP ; Return ACC and STATUS

 RETI ; Return from interrupt

START:

 … ; User program

 …

 END ; program ends

Example: Interrupt protection scene

PUSH:

 LD ACC ; Save ACC to custom register ACC_BAK

 SWAPA STATUS ; Status register STATUS high and low byte swap

 LD STATUS ; Save to custom register STATUS_BAK

 RET ; Return

Example: Interrupted exit recovery scene

POP:

SWAPA STATUS_BAK

; Swap the high and low byte of the data saved to

STATUS_BAK to ACC

 LD STATUS,A ; Send the value of ACC to the status register STATUS

SWAPR ACC_BAK

; Swap the high and low byte of the data saved to

ACC_BAK

SWAPA ACC_BAK
; Swap the high and low byte of the data saved to

ACC_BAK to ACC

 RET ; return

Note: Since the SC8P115xA series chips do not provide dedicated pop and push instructions, the user
needs to protect the interrupt site by himself.

www.mcu.com.cn V1.3.1

 12 / 70

SC8P115xA series

2.1.1.3 Jump table

The jump table can achieve the multi-address jump function. Since the new PCL can be obtained by

adding the values of PCL and ACC, multiple address jumps can be realized by adding different ACC values to

PCL. If the ACC value is N, PCL+ACC means adding N to the current address. After the current instruction is

executed, the PCL value will automatically increase by 1. Please refer to the following example. If an overflow

occurs after PCL+ACC, the PC will not carry over automatically, so be careful when writing programs. In this

way, users can easily realize multi-address jump by modifying the value of ACC.

PCLATH is the PC high-order buffer register. When operating on PCL, you must first assign a value to

PCLATH.

Example: Correct multi-address jump program example

ROM address

 LDIA 00H

 LD PCLATH,A ; Must assign to PCLATH

 …

0010H: ADDR PCL ;ACC+PCL

0011H: JP LOOP1 ;ACC=0, jump to LOOP1

0012H: JP LOOP2 ;ACC=1, jump to LOOP2

0013H: JP LOOP3 ;ACC=2, jump to LOOP3

0014H: JP LOOP4 ;ACC=3, jump to LOOP4

0015H: JP LOOP5 ;ACC=4, jump to LOOP5

0016H: JP LOOP6 ;ACC=5, jump to LOOP6

Example: wrong multi-address jump program example

ROM address

 LDIA 00H

 LD PCLATH,A ; must assign to PCLATH

 …

00FCH: ADDR PCL ;ACC+PCL

00FDH: JP LOOP1 ;ACC=0, jump to LOOP1

00FEH: JP LOOP2 ;ACC=1, jump to LOOP2

00FFH: JP LOOP3 ;ACC=2, jump to LOOP3

0100H: JP LOOP4 ;ACC=3, jump to address 0000H

0101H: JP LOOP5 ;ACC=4, jump to address 0001H

0102H: JP LOOP6 ;ACC=5, jump to address 0002H

Note: Since PCL overflow will not automatically carry to the high order, when using PCL for

multi-address jump, it should be noted that this segment of the program must not be placed in

the paging of the ROM space.

www.mcu.com.cn V1.3.1

 13 / 70

SC8P115xA series

2.1.2 Data memory

RAM：74 byte

Address data storage

000H

System register area

001H

…

…

014H

015H
System register area

(Reserved)
…

019H

020H

General register area

021H

022H

…

…

04EH

04FH

The data memory consists of 74 × 8 bits and is divided into two functional areas: special function

registers (26 × 8) and general-purpose data memory (48 × 8). Data memory cells are mostly read/write, but

some are read only. The special function register package address is from 00H to 19H, and the general data

register address is from 20H to 4FH.

2.1.2.1 General purpose data storage

The 020H~04FH addresses of the RAM belong to the general register area that the user can define

freely, and the registers in this area are random values when powered on. After the system is powered on, if

an accidental reset (non-power-on reset) occurs, this area register will keep the original value unchanged.

www.mcu.com.cn V1.3.1

 14 / 70

SC8P115xA series

2.1.2.2 System dedicated data memory

Address Name Description

00H INDF Indirect addressing register

01H TMR0 TMR0 data register

02H PCL Program pointer PC lower 8 bits

03H STATUS System Status Flag Register

04H FSR indirection pointer

05H PORTB PB port data register

06H TRISB PB port direction register

07H OPTION_REG Prescaler register

08H OSCCON Oscillator Control Register

09H INTCON Interrupt Control Register

0AH PCLATH Write buffer for the upper 2 bits of the program pointer PC

0BH PDCONB PB port pull-down resistor register

0CH ODCONB PB port open-drain output register

0DH WPUB PB port pull-up resistor register

0EH IOCB PB port level change interrupt register

0FH TMR0PRD TMR0 Period Register

10H PWMCTR0 PWM Control Register 0

11H PWMCTR1 PWM Control Register 1

12H PWMCTR2 PWM Control Register 2

13H PWMR PWM Duty Cycle Indirect Addressing Register

14H PWMPRD PWM Period Register

15H - -

16H - -

17H - -

18H - -

19H - -

www.mcu.com.cn V1.3.1

 15 / 70

SC8P115xA series

2.2 Addressing mode

2.2.1 Direct addressing

The RAM is operated through the working register (ACC).

Example: The value of ACC is sent to the 30H register

 LD 30H,A

Example: The value of the 30H register is sent to the ACC

 LD A,30H

2.2.2 Immediate addressing mode

Transfer immediate data to working register (ACC)

Example: immediate data 12H is sent to ACC

 LDIA 12H

2.2.3 Indirect addressing

Data memory can be addressed directly or indirectly. Indirectly addressable through the INDF register,

which is not a physical register. When accessing the INDF, it will use the value in the FSR register as the

address and point to the register of the address, so after the FSR register is set, the INDF register can be

accessed as a destination register. An indirect read of INDF (FSR=0) will generate 00H. An indirect write to

the INDF register will result in a no-op. The following example illustrates the use of indirect addressing in a

program.

Example: Application of FSR and INDF

 LDIA 30H

 LD FSR,A ; Indirect addressing pointer points to 30H

CLR INDF

; Clearing INDF is actually clearing the 30H address RAM
pointed to by FSR

Example: Indirect addressing clear RAM (20H-4FH) example:

 LDIA 1FH

 LD FSR,A ; Indirect addressing pointer points to 1FH

LOOP:

 INCR FSR ; Add 1 to the address, the initial address is 20H

 CLR INDF ; Clear the address pointed to by the FSR

 LDIA 4FH

 SUBA FSR

 SNZB STATUS,C ; Cleared until the FSR address is 4FH

 JP LOOP

www.mcu.com.cn V1.3.1

 16 / 70

SC8P115xA series

2.3 Stack

The stack buffer of SC8P115xA has a total of 5 layers. The stack buffer is neither a part of the data

memory nor a part of the program memory, and can neither be read nor written. Its operation is realized by

the stack pointer (SP), and the stack pointer (SP) cannot be read or written. When the system is reset, the

stack pointer will point to the top of the stack. When a subroutine call and interrupt occur, the program

counter (PC) value is pushed into the stack buffer, and the value is returned to the program counter (PC)

when returning from an interrupt or subroutine. The following figure illustrates how it works.

Figure 2-1: How the stack buffer works

The use of stack buffers will follow a FILO principle.

Note: The stack buffer has only 5 layers. If the stack is full and a non-maskable interrupt occurs, only

the interrupt flag will be recorded, and the interrupt response will be suppressed. The interrupt

will not be responded until the stack pointer is decremented; this function can prevent the

interrupt from overflowing the stack. Similarly, if the stack is full and a subroutine call occurs, the

stack will overflow. The content that entered the stack first will be lost. Only the last 5 return

addresses are reserved. This point should be paid attention to when writing the program to

avoid the program running away.

RET

RETI

CALL

Interrupt

SP-1 SP+1

SP4

SP3

SP2

SP1

SP0

www.mcu.com.cn V1.3.1

 17 / 70

SC8P115xA series

2.4 Working Register（ACC）

2.4.1 General

ALU is an 8-bit wide arithmetic logic unit, through which all mathematical and logical operations of the

MCU are completed. It can add, subtract, shift and logical operations on the data; ALU also controls the

status bit (in the STATUS status register), which is used to indicate the status of the operation result.

The ACC register is an 8-bit register. The operation result of the ALU can be stored here. It is not part of

the data memory but is located in the CPU for the ALU to use in the operation. Therefore, it cannot be

addressed and can only be addressed by the provided instruction. to use.

2.4.2 ACC application

Example: use ACC for data transfer

 LD A,R01 ; Assign the value of register R01 to ACC

 LD R02,A ; Assign the value of ACC to register R02

Example: Use ACC as immediate addressing target operand

 LDIA 30H ; Assign 30H to ACC

 ANDIA 30H ; Perform an AND operation between the current ACC
value and the immediate value 30H,

 XORIA 30H ; The result is put into ACC

Example: Use ACC as the second operand of a two-operand instruction

 SUBA R01 ;R01-ACC, the result is put into ACC

 SUBR R01 ; R01-ACC, the result is put into R01

www.mcu.com.cn V1.3.1

 18 / 70

SC8P115xA series

2.5 Program Status Register（STATUS）

The register STATUS contains ALU operation status information and system reset status information.

Among them, bits TO and PD display system reset status information, including power-on reset, external

reset and watchdog reset, etc.; bits C, DC and Z display the operation information of ALU.

03H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

STATUS --- --- --- TO PD Z DC C

Read/Write --- --- --- R/W R/W R/W R/W R/W

Reset
value

--- --- --- 1 1 X X X

Bit7-Bit5 Not use.

Bit4 TO: Timeout bit;

1= Power on or execute the CLRWDT instruction or STOP instruction;

0= A WDT timeout occurred.

Bit3 PD: drop potential;

1= Power on or execute the CLRWDT instruction;

0= A STOP instruction was executed.

Bit2 Z: The result is zero bits;

1= the result of an arithmetic or logical operation is zero;

0= The result of an arithmetic or logical operation is not zero.

Bit1 DC: half-carry/borrow bit;

1= The 4th low order of the result is carried to the high order;

0= The 4th low-order bit of the result is not carried over to the high-order bit.

Bit0 C: carry/borrow bit;

1= The most significant bit of the result is carried over;

0= The most significant bit of the result is not carried over.

Except for the TO and PD bits in the STATUS register, all other bits can be set or cleared by instructions.

For example, the result of the instruction: "CLRSTATUS" is STATUS="xxx00100", not all zeros as imagined.

That is to say, after the instruction is executed, the values of TO and PD remain unchanged, and the Z flag bit

is set to 1 due to clearing, so if you need to change the value of STATUS, it is recommended to use "SETB",

"CLRB", "SWAPA", " SWAPR" these instructions, because these instructions do not affect the status flag bits.

The TO and PD flag bits can reflect the reason for the chip reset. The events affecting TO and PD and

the states of TO and PD after various resets are listed below.

Event TO PD TO PD Reset reason

power up 1 1 0 0
WDT overflow wakes up

sleeping MCU

WDT overflow 0 X 0 1 WDT overflow non-sleep state

STOP command 1 0 1 1 power up

CLRWDT
instruction

1 1 Status of TO/PD after reset

hibernate 1 0

 Table of Events Affecting TO/PD

www.mcu.com.cn V1.3.1

 19 / 70

SC8P115xA series

2.6 Prescaler（OPTION_REG）

The prescaler (OPTION_REG) register is an 8-bit, readable and writable register that contains various

control bits for configuring the TMR0/WDT prescaler and TMR0.

07H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

OPTION_REG XT_EN T0SYNC T0CS T0SE PSA PS2 PS1 PS0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset value 0 1 1 1 1 0 1 1

Bit7 XT_EN:

0:

1:

Crystal enable bit.

Do not enable crystal oscillator.

Enable crystall oscillator

Bit6 T0SYNC:

0:

1:

External clock and internal clock asynchronous enable bit.

External clock and internal clock synchronization.

Asynchronous external clock and internal clock.

Bit5 T0CS:

0:

1:

TMR0 clock source selection bit.

Internal clock (FOSC/4).

External clock (T0CKI port input waveform or external crystal oscillator, depending on

Bit7 XT_EN).

Bit4 T0SE:

0:

1:

T0CKI signal triggers edge select bit.

rising edge trigger.

falling edge trigger.

Bit3 PSA:

0:

1:

Prescaler assignment bits.

Allocated to TMR0.

Allocated to WDT.

Bit2~Bit0 PS2~PS0: Pre-allocated parameter configuration bits.

PS2 PS1 PS0

TMR0 frequency

division ratio

WDT frequency

division ratio

0 0 0 1:2 1:1

0 0 1 1:4 1:2

0 1 0 1:8 1:4

0 1 1 1:16 1:8

1 0 0 1:32 1:16

1 0 1 1:64 1:32

1 1 0 1:128 1:64

1 1 1 1:256 1:128

The prescaler register is actually a 8-bit counter. When it is used to monitor the register WDT, it is used

as a postscaler; when used in a timer/counter, as a prescaler, usually collectively referred to as a prescaler.

There is only one physical frequency divider in the chip, which can only be used for WDT or TMR0, and the

two cannot be used at the same time. That is, if used for TMR0, the WDT cannot use the prescaler, and vice

versa.

When used with WDT, the CLRWDT instruction will clear both the prescaler and the WDT timer.

When used for TMR0, all instructions related to writing to TMR0 (eg: CLR TMR0, SETB TMR0, 1, etc.)

will clear the prescaler.

www.mcu.com.cn V1.3.1

 20 / 70

SC8P115xA series

Whether the prescaler is used by TMR0 or WDT is completely software controlled. He can change

dynamically. In order to avoid unnecessary chip resets, when switching from TMR0 to WDT, the following

commands should be executed.

 CLR TMR0 ; TMR0 clear

 CLRWDT ; WDT clear

 LDIA B’00xx1111’ ; Necessary steps that must be performed

 LD OPTION_REG, A ; Necessary steps that must be performed

 LDIA B’00xx1xxx’ ; set new prescaler

 LD OPTION_REG, A

To switch the prescaler from being assigned to the WDT to being assigned to the TMR0 module, the

following instruction should be executed.

 CLRWDT ; WDT clear

 LDIA B’00xx0xxx’ ; set new prescaler

 LD OPTION_REG, A

Note: To obtain a 1:1 prescaler configuration for TMR0, the prescaler can be assigned to the WDT by

setting the PSA bit of the option register.

www.mcu.com.cn V1.3.1

 21 / 70

SC8P115xA series

2.7 Program Counter（PC）

The program counter (PC) controls the execution sequence of instructions in the program memory. It can

address the entire range of ROM. After the instruction code is obtained, the program counter (PC) will

automatically increase by one to point to the address of the next instruction code. But if perform jumps,

conditional jumps, assignments to PCL, subroutine calls, initialization resets, interrupts, interrupt returns,

subroutine returns, etc., the PC will load the address associated with the instruction instead of the address of

the next instruction.

When a conditional jump instruction is encountered and the jump condition is met, the next instruction

read during the execution of the current instruction will be discarded, and an empty instruction operation

cycle will be inserted before the correct instruction can be obtained. Otherwise, the next instruction will be

executed sequentially.

Note: When the programmer uses PCL to make short jumps, the PC high-order buffer register PCLATH

must be assigned a value first.

The PC values for several special cases are given below

When reset PC=0000;

when interrupted PC=0004 (the original PC+1 will be automatically pushed into the stack);

RET i, RET, RETI PC=value from stack;

When operating PCL PC[9:8]=PCLATH, PC[7:0]=user-specified value;

When JP PC = the value specified by the program;

Other instructions PC=PC+1;

www.mcu.com.cn V1.3.1

 22 / 70

SC8P115xA series

2.8 Watchdog counter（WDT）

The Watch Dog Timer is an on-chip self-oscillating RC oscillator timer that does not require any

peripheral components. Even if the main clock of the chip stops working, the WDT can keep timing. A WDT

time-out will generate a reset. The CONFIG option is integrated in the SC8P115xA series chip, and the WDT

can be disabled by setting. For details, please refer to the description of CONFIG option in chapter 1.5. When

using it, it should be noted that when WDT is disabled, the CONFIG option and WDTEN must be turned off at

the same time.

2.8.1 WDT cycle

WDT has a basic overflow period of 18ms (without prescaler). If you need a longer WDT period, you can

assign the prescaler to WDT. The maximum frequency division ratio is 1:128. At this time, the period of WDT

About 2.3s. The overflow period of WDT will be affected by parameters such as ambient temperature, power

supply voltage, etc.

The "CLRWDT" and "STOP" instructions will clear the WDT timer and the count value in the prescaler

(when the prescaler is assigned to the WDT). WDT is generally used to prevent the system from running out

of control, or it can be said to prevent the microcontroller program from running out of control. Under normal

circumstances, the WDT should be cleared by the "CLRWDT" instruction before it overflows to prevent a

reset. If the program runs out of control due to some disturbance, the "CLRWDT" instruction cannot be

executed before the WDT overflows, and the WDT overflows and resets. Reboot the system without losing

control. If the reset is caused by WDT overflow, the "TO" bit of the status register (STATUS) will be cleared,

and the user can judge whether the reset is caused by WDT overflow according to this bit.

Note:

1. If the WDT function is used, the "CLRWDT" instruction must be placed in some places in the program

to ensure that the WDT can be cleared before overflow. Otherwise, the chip will be reset

continuously, causing the system to not work properly.

2. The WDT cannot be cleared in the interrupt program, otherwise the "running" of the main program

cannot be detected.

3. In the program, there should be an operation to clear the WDT in the main program. Try not to clear

the WDT in multiple branches. This architecture can maximize the protection function of the

watchdog counter.

4. The overflow time of different chips of the watchdog counter is different, so when setting the clear

WDT time, there should be a greater redundancy with the WDT overflow time to avoid unnecessary

WDT reset.

www.mcu.com.cn V1.3.1

 23 / 70

SC8P115xA series

3. System clock

3.1 Overview

The clock signal is generated by internal oscillation, and four non-overlapping quadrature clock signals

are generated in the chip, which are called Q1, Q2, Q3, and Q4 respectively. Inside the IC, each Q1

increments the program counter (PC) by one, and Q4 fetches the instruction from the program memory unit

and latches it in the instruction register. The fetched instruction is decoded and executed between the next

Q1 to Q4, which means that one instruction will only be executed in 4 clock cycles. The following figure

shows the timing diagram of clock and instruction cycle execution.

An instruction cycle contains 4 Q cycles. The execution and fetching of instructions adopts a pipeline

structure. Instruction fetching occupies one instruction cycle, while decoding and execution occupy another

instruction cycle. However, due to the pipeline structure, from a macro point of view, the effective execution

time is one instruction cycle. If an instruction causes the program counter address to change (such as JP),

then the prefetched instruction opcode is invalid, and two instruction cycles are required to complete the

instruction, which is why the PC operation instruction takes two clock cycles.

Figure 3-1: Clock and Instruction Cycle Timing Diagram

PC PC+1 PC+2

Address

PC+1 Address

PC+2 Execute command PC+1

Address PC

Execute command PC-1

Execute command PC

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

CLK

Q1

Q2

Q3

Q4

www.mcu.com.cn V1.3.1

 24 / 70

SC8P115xA series

The relationship between oscillation frequency and command speed is listed below

Frequency Double instruction cycle Single instruction cycle

1MHz 8us 4us

2MHz 4us 2us

4MHz 2us 1us

8MHz 1us 500ns

www.mcu.com.cn V1.3.1

 25 / 70

SC8P115xA series

3.2 System oscillator

SC8P115xA has only one oscillation mode: internal RC oscillation.

3.2.1 Internal RC oscillation

The default oscillation mode of the chip is internal RC oscillation, and its oscillation frequency is 8M.

3.3 Oscillator Control Register

The Oscillator Control (OSCCON) register controls the system clock, frequency selection, WDT enable

and TMR0 enable.

08H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

OSCCON SWDTEN IRCF2 IRCF1 IRCF0 --- --- --- TMR0EN

Read/Write R/W R/W R/W R/W --- --- --- R/W

Reset value 1 1 1 0 --- --- --- 0

Bit7 SWDTEN:

0:

1:

WDT enable bit.

Disable WDT.

Enable WDT.

Bit6~Bit4 IRCF2~0: Frequency selection configuration bits.

 IRCF2 IRCF1 IRCF0 Core clock divider

0 0 0 FWDT(8K)

0 0 1 FOSC/64

0 1 0 FOSC/32

0 1 1 FOSC/16

1 0 0 FOSC/8

1 0 1 FOSC/4

1 1 0 FOSC/2

1 1 1 FOSC

Bit6~Bit4 Not use

Bit0 TMR0EN:

0:

1:

TMR0 enable bit.

Disable TMR0.

Enable TMR0.

3.4 Start-up time

The start-up time (OSC TIME) refers to the time from the chip reset to the stable oscillation of the chip,

which is fixed at 18ms. This start-up time will exist regardless of whether the chip is reset due to power-on or

other reasons.

www.mcu.com.cn V1.3.1

 26 / 70

SC8P115xA series

4. Reset

SC8P115xA can use the following 3 reset methods:

◆ Power-on reset.

◆ Low voltage reset (LVR enabled).

◆ Watchdog overflow reset under normal operation.

When any of the above resets occurs, all system registers will be restored to their default states, the

program will stop running, and the program counter PC will be cleared to zero. After the reset, the program

will start to run from the reset vector 0000H. The PD and TO flag bits of STATUS can give information about

the system reset status (see the description of STATUS for details). Users can control the program running

path according to the status of PD and TO.

Any reset situation requires a certain response time. The system provides a complete reset process to

ensure the smooth progress of the reset action.

4.1 Power on reset

Power-on reset is closely related to LVR operation. The power-on process of the system is in the form of

a gradually rising curve, and it takes a certain amount of time to reach the normal level. The normal sequence

of power-on reset is given below:

- Power on: the system detects the rise of the power supply voltage and waits for it to stabilize;

- System initialization: all system registers are set to initial values.

- The oscillator starts working: the oscillator starts to provide the system clock.

- Execute the program: After power-on, the program starts to run.

www.mcu.com.cn V1.3.1

 27 / 70

SC8P115xA series

4.2 Power down reset

A power-down reset is used for system voltage dips caused by external factors (eg, disturbances or

changes in external loads). When using external reset, power-down reset may cause abnormal system

working state or program execution error, voltage drop may enter system dead zone, system dead zone

means that the power supply cannot meet the minimum operating voltage requirements of the system.

V1

V2
V3

System work error area

System normal working area

LVR detection voltage

VDD

Figure 4-1: Schematic diagram of power-down reset

The figure above is a typical power-down reset schematic. In the figure, VDD is seriously disturbed, and

the voltage drop is very low. In the area above the dotted line, the system works normally, and in the area

below the dotted line, the system enters an unknown working state, which is called the dead zone. When

VDD drops to V1, the system is still in a normal state; when VDD drops to V2 and V3, the system enters the

dead zone, which is prone to errors.

The system may enter the dead zone under the following conditions:

⚫ DC in use：

- Battery power is generally used in DC applications. When the battery voltage is too low or the

microcontroller drives the load, the system voltage may drop and enter the dead zone. At this

time, the power supply will not drop further to the LVD detection voltage, so the system remains

in the dead zone.

⚫ AC in use：

- When the system is powered by AC, the DC voltage value is affected by noise in the AC power

supply. When the external load is too high, such as driving a motor, the interference generated

by the load action also affects the DC power supply. If VDD drops below the minimum operating

voltage due to interference, the system may enter an unstable working state.

- In AC application, the system power-on and power-off times are long. Among them, the

power-on sequence protection enables the system to be powered on normally, but the

power-off process is similar to the situation in DC application. After the AC power supply is

turned off, the VDD voltage tends to enter the dead zone during the process of slow decline.

As shown in the figure above, the normal operating voltage region of the system is generally higher than

the system reset voltage, and the reset voltage is determined by the low voltage detection (LVR) level. When

the system execution speed increases, the minimum system operating voltage also increases accordingly,

but since the system reset voltage is fixed, there will be a voltage area between the system minimum

operating voltage and the system reset voltage, and the system cannot work normally, nor will reset, this area

is the dead zone.

www.mcu.com.cn V1.3.1

 28 / 70

SC8P115xA series

4.2.1 Improvement method of power-down reset

The following suggestions are given：

◆ Enable the low voltage detection function of MCU;

◆ Turn on the watchdog timer;

◆ Reduce the operating frequency of the system;

◆ Increase the voltage drop slope.

Enable the low voltage detection function of the MCU

SC8P115xA series chips have integrated low voltage detection (LVR) function, which can be controlled

by programming CONFIG. For details, see Chapter 1.5 about programming CONFIG selection instructions.

When the LVR function is enabled, when the system voltage drops below the LVR voltage, the LVR is

triggered, and the system is reset. Since the LVR voltage is always higher than the minimum operating

voltage of the chip, there is no system operating dead zone.

Watchdog timer

The watchdog timer is used to ensure the normal operation of the program. When the system enters the

working dead zone or the program runs in error, the watchdog timer will overflow, and the system will be

reset.

Reduce the operating frequency of the system

The faster the operating frequency of the system, the higher the minimum operating voltage of the

system. Therefore, the scope of the working dead zone is increased, and the minimum working voltage can

be reduced by reducing the working speed of the system, thereby effectively reducing the probability of the

system working at the dead zone voltage.

Increase the voltage drop slope

This method can be used in an environment where the system works in an AC power supply. Generally,

in an AC power supply system, the system voltage drops very slowly during the power-down process, which

will cause the chip to work at the dead zone voltage for a long time. The working state of the chip may be

wrong. It is recommended to add a discharge resistor between the chip power supply and the ground wire, so

that the MCU can quickly pass through the dead zone and enter the reset zone to avoid the possibility of chip

power-on errors.

www.mcu.com.cn V1.3.1

 29 / 70

SC8P115xA series

4.2.2 Watchdog reset

The watchdog reset is a protection setting of the system. Under normal conditions, the watchdog timer is

cleared by the program. If an error occurs, the system is in an unknown state, the watchdog timer overflows,

and the system is reset at this time. After the watchdog is reset, the system restarts into a normal state.

The timing of watchdog reset is as follows：

- Watchdog timer status: the system detects whether the watchdog timer overflows, and if it overflows,

the system resets;

- Initialization: All system registers are set to default state;

- The oscillator starts working: the oscillator starts to provide the system clock;

- Program: reset ends, program starts running

For the application of the watchdog timer, please refer to chapter 2.8 WDT application.

www.mcu.com.cn V1.3.1

 30 / 70

SC8P115xA series

5. System working mode

SC8P115xA series MCU has two working modes, one is normal working mode, and the other is sleep

working mode. In the normal working mode, each functional module is in the working state. In the sleep state,

the system clock stops, and the chip keeps the original state unchanged. At this time, if the WDT function is

not disabled by the programming CONFIG option, the WDT timer will always be Work.

5.1 Sleep mode

The power saving mode is started by the STOP instruction. In the power saving mode, the system

oscillation is stopped to reduce power consumption, and all peripherals stop working. Power saving mode

can be woken up by reset, WDT overflow or interrupt. When the power saving mode is woken up, the clock

circuit still needs oscillation stabilization time. When the power-saving mode is awakened by reset, the

system starts to execute the program from the address 0000H; when the power-saving mode is awakened by

an interrupt or WDT overflow, the PC starts to execute the program from the next address of the STOP

instruction.

5.1.1 Sleep mode application example

Before the system enters the sleep mode, if the user needs to obtain a small sleep current, please

confirm the status of all I/Os. Each input port has a fixed state to prevent the port line level in an

indeterminate state and increase the sleep current when the I/O is in the input state; according to the

functional requirements of the actual solution, the WDT function can be disabled to reduce the sleep current.

Example: A handler that goes to sleep

SLEEP_MODE：

 LDIA B’00000000’

 LD TRISB, A ; PB port is set as output port

 … ; Each output port is set to no load state

 LDIA 0A5H

 LD SP_FLAG, A
;Set the sleep state memory register

(user-defined）

 CLRWDT ;clear WDT

 STOP ; Execute the STOP instruction

www.mcu.com.cn V1.3.1

 31 / 70

SC8P115xA series

5.1.2 Wake-up from sleep mode

When the system is in sleep state, there are the following four conditions that can make the CPU exit the

sleep state：

◆ Watchdog overflow;

◆ External interrupt;

◆ TMR0 timing interrupt (the crystal oscillator enable must be turned on);

◆ After the system is powered off, power it on again.

In the dormant MCU, when an interrupt or watchdog overflow occurs, the chip starts to run the program

from the next address of the STOP instruction. When other situations occur, the chip will start to run the

program from the reset address (0000H), and the user can decide the reset according to the TO and PD flags

of STATUS and SP_FLAG (the user should define it by himself).

Example: Sleep wakes up user handler

 ORG 0000H

 JP START ; go to reset handler

 ORG 0004H

 JP INT_START ; go to interrupt handler

 ORG 0010H

START: ; reset handler

 SZB STATUS, PD

 JP START_2 ; Not a handler for reset from sleep

 SZB STATUS, TO

 JP START_3 ; Non-WDT wake-up MCU handler

 …

 …

 …

SLEEP_MODE: ; sleep subroutine

 … ; Set the state before sleep

 STOP ; The chip enters the SLEEP state handler

NOP

; Press the key to wake up, add an empty
command and wait for the clock to stabilize

JP XXXX

; Press the key to wake up the program that
should be handled

5.1.3 Sleep mode wake-up time

When the MCU wakes up from the sleep state, it needs to wait for an oscillation stabilization time (OSC

TIME), which can be controlled by programming CONFIG. For details, see Chapter 1.5 about programming

CONFIG selection instructions.

www.mcu.com.cn V1.3.1

 32 / 70

SC8P115xA series

6. I/O port

The SC8P115xA has two sets of I/O ports: PORTB (up to 6 I/Os). The readable and writable port data

registers provide direct access to these ports.

Port bit 8 pin 6 pin Pin description I/O

PORT B

PB0 7 / Schmitt trigger input, push-pull output, open-drain output, PWM0 I/O

PB1 6 / Schmitt trigger input, push-pull output, open-drain output, PWM1, INT I/O

PB2 5 3
Schmitt trigger input, push-pull output, open-drain output, PWM2,
T0CKI

I/O

PB3 4 4 Schmitt trigger input, open drain output, VPP I/O

PB4 3 1 Schmitt trigger input, push-pull output, open-drain output, OSCIN I/O

PB5 2 6 Schmitt trigger input, push-pull output, open-drain output, OSCOUT I/O

Table 6-1: Overview of port configuration

www.mcu.com.cn V1.3.1

 33 / 70

SC8P115xA series

6.1 I/O port mode and pull-up and pull-down resistors

Registers PORTB, TRISB, PDCONB, ODCONB, WPUB, IOCB are used to control the working mode of

the I/O line.

6.1.1 PORTB port

The PORTB port has 8Bit input and output pins. There are 6 registers related to it, namely IO port data

register (PORTB), IO port direction control register (TRISB), IO port pull-up control register (WPUB), IO port

pull-down control register (PDCONB), IO port open-drain output control register (ODCONB), IO port level

change interrupt control register (IOCB).

PORTB port data register PORTB(05H)

05H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PORTB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reser value
X X X X X X X X

definition

I/O I/O I/O I/O I/O I/O I/O I/O

 PWM2 PWM1 PWM0

 OSCOUT OSCIN T0CKI INT

PORTB port direction register TRISB(06H)

06H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset value 1 1 1 1 1 1 1 1

Bit7~Bit0 PORTB direction

0: output；

1: Input.

PORTB port pull-up register WPUB(0DH)

0DH Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset value 0 0 0 0 1 0 0 0

Bit7~Bit0 PORTB pull-up resistor enabled.

0: Disable pull-up resistors；

1: Enable pull-up resistors (must turn off the pull-down enable for the corresponding bit).

www.mcu.com.cn V1.3.1

 34 / 70

SC8P115xA series

PORTB port pull-down register PDCONB(0BH)

0BH Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PDCONB PDCONB7 PDCONB6 PDCONB5 PDCONB4 --- PDCONB2 PDCONB1 PDCONB0

R/W R/W R/W R/W R/W --- R/W R/W R/W

Reset
value

0 0 0 0 --- 0 0 0

Bit7~Bit0 PORTB pull-down resistor enable.

0: Disable pull-down resistors；

1: Enable pull-down resistor (must turn off the pull-up enable for the corresponding bit).

PORTB port open-drain output register ODCONB(0CH)

0CH Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ODCONB ODCONB7 ODCONB6 ODCONB5 ODCONB4 --- ODCONB2 ODCONB1 ODCONB0

R/W R/W R/W R/W R/W --- R/W R/W R/W

Reset
value

0 0 0 0 --- 0 0 0

Bit7~Bit0 PORTB open drain output enable.

0: Disable open-drain output；

1: Enable open-drain output.

PORTB port level change interrupt register IOCB(0EH)

0EH Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IOCB IOCB7 IOCB6 IOCB5 IOCB4 IOCB3 IOCB2 IOCB1 IOCB0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset
value

0 0 0 0 0 0 0 0

Bit7~Bit0 PORTB level change interrupt enable.

0: Disable level change interrupt；

1: Enable level change interrupt.

www.mcu.com.cn V1.3.1

 35 / 70

SC8P115xA series

6.2 The use of I/O ports

6.2.1 Write I/O port

The I/O port registers of SC8P115xA series chips, like general general registers, can be written through

data transfer instructions, bit operation instructions, etc.

Example: write I/O port program

 LD PORTB, A ; The ACC value is assigned to the PORTB port

 CLRB PORTB,0 ; PB0 port is cleared to zero

6.2.2 Read I/O port

Example: Read I/O port program

 LD A, PORTB ; The value of PORTB is assigned to ACC

SZB PORTB,1

; Determine whether the PB1 port is 0, if it is 0, skip
the next statement

Note: When the user reads the status of an I/O port, if the I/O port is an input port, the data read back

by the user will be the state of the external level of this port line. If this I/O port is an output

port, then the read value will be the data of the internal output register of this port line.

www.mcu.com.cn V1.3.1

 36 / 70

SC8P115xA series

6.3 I/O port usage precautions

When operating the I/O port, the following aspects should be paid attention to：

1. When the I/O is converted from output to input, wait a few instruction cycles for the I/O port to

stabilize.

2. If the internal pull-up resistor is used, when the I/O is converted from output to input, the stabilization

time of the internal level is related to the capacitor connected to the I/O port. The user should set the

waiting time according to the actual situation to prevent the I/O port from accidentally scanning the

level.

3. When the I/O port is an input port, its input level should be between "VDD+0.7V" and "VSS-0.7V". If

the input port voltage is not within this range, the method shown in the figure below can be used.

Figure 6-1: Circuit using input voltage not within specified range

4. If the I/O port is connected in series with a long cable, please add a current limiting resistor near the

chip I/O to enhance the MCU's EMC resistance.

5. If the PB3 port is used as the signal input port, it is recommended to use the following method to

enhance the MCU's resistance to EMC and ESD

Figure 6-2: PB3 port as signal input port

VSS

VDD

VSS

I/O
R1

MCU

D2

IN

D1

VDD

R2

VSS

VDD

VSS

PB3

VDD

R1

MCU
C1

IN

www.mcu.com.cn V1.3.1

 37 / 70

SC8P115xA series

7. Interrupt

7.1 Interrupt overview

SC8P115xA has 3 interrupt sources: 1 internal interrupt (TMR0) and 2 external interrupts (INT, IOCB).

Once the program enters the interrupt, the GIE bit in the INTCON register will be automatically cleared by

hardware to avoid re-serving other interrupts. The system exits the interrupt, that is, after executing the RETI

instruction, the hardware automatically sets GIE to "1" to respond to the next interrupt. The interrupt request

is stored in the register INTCON register.

Figure 7-1: Interrupt System

Interrupt vector
address 0004H

T0IF

PBIF

INTF
INT trigger

IOCB trigger

TMR0 overflow

Interrupt Enable
Register

GIE

interrupt enable
Interrupt

Flag
Register

www.mcu.com.cn V1.3.1

 38 / 70

SC8P115xA series

7.2 Interrupt Control Register

The interrupt request control register INTCON includes all interrupt enable control bits and flags bits.

The valid bit of GIE and corresponding interrupt is set to "1", then the system enters the interrupt service

routine, the program counter is pushed into the stack, and the program transfers to 0004H, that is, the

interrupt program. When the program runs to the instruction RETI, the interrupt ends, and the system exits

the interrupt service.

Once an interrupt request occurs, the corresponding interrupt flag will be set to "1". After the request is

responded, the program should clear the flag, and the MCU will not automatically clear the interrupt request

flag.

Interrupt Control Register INTCON (09H)

09H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

INTCON GIE INTEG T0IE INTE PBIE T0IF INTF PBIF

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset value 0 0 0 0 0 0 0 0

Bit7 GIE: Global interrupt enable bit enable bit;

0: disable all interrupts;

1: All unmasked interrupts are enabled.

Bit6 INTEG: External interrupt edge selection;

0: Rising edge trigger;

1: Falling edge trigger.

Bit5 T0IE: TIMER0 overflow interrupt enable bit;

0: Disable TIMER0 interrupt;

1: Enable TIMER0 interrupt.

Bit4 INTE: INT external interrupt enable bit;

0: Disable INT external interrupt;

1: Enable INT external interrupt.

Bit3 PBIE: PORTB level change interrupt enable bit(1);

0: Disable PORTB level change interrupt;

1: PORTB level change interrupt enabled.

Bit2 T0IF: TMR0 overflow interrupt flag bit (2);

0: The TMR0 register has not overflowed;

1: The TMR0 register has overflowed (must be cleared by software).

Bit1 INTF: INT external interrupt flag bit;

0: No INT external interrupt occurred;

1: An INT external interrupt occurred (must be cleared by software).

Bit0 PBIF: PORTB level change interrupt flag bit;

0: None of the PORTB general purpose I/O pins have changed their state;

1: At least one pin in the PORTB port has changed state (must be cleared by

software).

Note:

1. The IOCB register must also be enabled, and the corresponding port line must be set to the input state.

2. The T0IF bit is set to 1 when TMR0 rolls over to 0. A reset does not change TMR0 and should be

initialized before clearing the T0IF bit.

www.mcu.com.cn V1.3.1

 39 / 70

SC8P115xA series

7.3 Protection method of interrupt site

After an interrupt request occurs and is responded to, the program goes to 0004H to execute the

interrupt subroutine. Before responding to the interrupt, the contents of ACC and STATUS must be saved.

The chip does not provide dedicated push-to-stack save and pop-to-stack restore instructions. Users need to

protect the contents of ACC and STATUS by themselves to avoid possible program running errors after the

interruption ends.

Example: stack protection for ACC and STATUS

 ORG 0000H

 JP START ; User program start address

 ORG 0004H

 JP INT_SERVICE ; interrupt service routine

 ORG 0010H

START：

 …

 …

INT_SERVICE：

PUSH： ; Interrupt service routine entry, save ACC and STATUS

 LD ACC ; Save the value of ACC, (ACC_BAK needs to be customized)

 SWAPA STATUS

 LD STATUS
; Save the value of STATUS, (STATUS_BAK needs to be
customized)

 …

 …

POP： ; Interrupt service routine exit, restore ACC and STATUS

 SWAPA STATUS_BAK

 LD STATUS,A ; Restore the value of STATUS

 SWAPR ACC_BAK ; Restore the value of ACC

 SWAPA ACC_BAK

 RETI

www.mcu.com.cn V1.3.1

 40 / 70

SC8P115xA series

7.3.1 Considerations for External Interrupts

Due to the fast response time of external interrupts, when the peripheral voltage of the system fluctuates,

or the system is disturbed by EMC, the MCU may enter the interrupt by mistake, so an RC filter circuit needs

to be added, as shown in the figure. The user can select different R1 and C1 according to the signal

frequency sampled by the external interrupt to improve the EMC resistance of the system.

Figure 7-2: External interrupt RC filter circuit

7.4 Interrupt priority and interrupt nesting

At the same time, multiple interrupt requests may appear in the system. At this time, the user must set

the priority of each interrupt according to the requirements of the system.

Note: When multiple interrupts occur at the same time, the MCU does not have a preset interrupt

priority. First, the priority of each interrupt must be pre-set; secondly, use the interrupt enable bit

and interrupt control bit to control whether the system responds to the interrupt. In the program,

the interrupt control bit and the interrupt request flag must be checked.

C1

INT

VSS

VDD

VSS

VDD

R1
 MCU

www.mcu.com.cn V1.3.1

 41 / 70

SC8P115xA series

8. Timer TMR0

8.1 TMR0 overview

TMR0 consists of the following functions：

◆ 8-bit timer/counter register (TMR0);

◆ 8-bit period register (TMR0PRD);

◆ 3-bit prescaler (shared with watchdog timer);

◆ Read and write operations can be performed with programs;

◆ Choices of working mode of timer or counter;

◆ Programmable internal or external clock source;

◆ External clock source can choose 32768 crystal oscillator;

◆ External clock edge selectable;

◆ Timer/counter overflow interrupt.

The working mode of TMR0 is selected by T0CS of the TMR0 control register (OPTION_REG)：

- When T0CS=0, it works as a timer, adding 1 to each instruction cycle without prescaler. If TMR0 is

written, the increment operation is prohibited for two cycles.

- When T0CS=1, XT_EN=1, it works as an external crystal oscillator timer, and the TMR0 module

adds 1 to each oscillation cycle.

- When T0CS=1, XT_EN=0, it works as an external pulse counter, and the counter of TMR0 will count

the pulses added to the T0CKI port. The rising edge or falling edge is selected by the bit T0SE.

When T0SE=0, the rising edge is valid, and when T0SE=1, the falling edge is valid.

www.mcu.com.cn V1.3.1

 42 / 70

SC8P115xA series

8.2 TMR0 related registers

There are three registers related to TMR0, 8-bit timer/counter (TMR0), 8-bit period register (TMR0PRD),

and 8-bit programmable control register (OPTION_REG). TMR0 is an 8-bit readable and writable

timer/counter, TMR0PRD is an 8-bit period compare register, OPTION_REG register, please refer to 2.6

about the application of prescaler register (OPTION_REG).

8-bit timer/counter TMR0(01H)

01H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TMR0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset value X X X X X X X X

8-bit period compare register TMR0PRD (0FH)

0FH Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TMR0PRD

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset value X X X X X X X X

www.mcu.com.cn V1.3.1

 43 / 70

SC8P115xA series

8.3 Using an external clock as the clock source for TMR0

When TMR0 is used for external clock counting, the external clock input must meet certain conditions.

The external clock is required to be synchronized with the internal phase clock (Tosc). After synchronization,

TMR0 will be incremented after a certain delay.

If the prescaler is not used, the external clock is the input to TMR0, and the T0CKI can be synchronized

with the internal phase clock by sampling the prescaler output during the Q2 and Q4 cycles of the internal

clock. Therefore, the duration of high-level time of the T0CKI pin signal is required to be at least 2 Tosc (plus

a short RC delay), and the low level time is at least 2 Tosc (plus a short RC delay).

If a prescaler is used, the external clock input must first be divided by the asynchronous pulse counting

type prescaler, so that the output of the prescaler is symmetrical. In order for the external clock to meet the

sampling requirements, the effect of the ripple counter must be considered. Therefore, the clock period of

T0CKI is at least 4 Tosc (plus a small RC delay) divided by the prescale value.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

T0 T0 + 1 T0 + 2

The pulse width is

too narrow to be

sampled
External clock

input to prescaler

output(1)

Sampled external

clock/prescaler

output

Increment TMR0

(Q4)

TMR0

(2)

(3)

Figure 8-1: TMR0 and external clock timing

Note:

1. It is external clock when no prescaler is selected; otherwise it is the output of the prescaler.

2. The arrow points to the sampling time.

3. There will be a delay of 3 Tosc to 7 Tosc (duration Q=Tosc) when the clock input changes to the

increment of TMR0, so when measuring the interval between adjacent pulses of TMR0 input, the

maximum error is ±4Tosc.

www.mcu.com.cn V1.3.1

 44 / 70

SC8P115xA series

8.4 Application of TMR0 as Timer

8.4.1 Basic time constant of TMR0

When the Bit3 bit of OPTION_REG is set to 1, the prescaler is used as the frequency division of the

WDT timing. At this time, the input clock of TMR0 is the system clock divided by 2. When Bit3 of

OPTION_REG is set to 0, the prescaler is used as the frequency division of the TMR0 counter. Its basic time

constant is as follows：

OPTION_REG

PS2～PS0

Input clock of TMR0
T0CLK

Fcpu=4MHz÷4

Maximum overflow interval TMR0 increment time

000 Fcpu/2 512μs 2μs

001 Fcpu/4 1024μs 4μs

010 Fcpu/8 2048μs 8μs

011 Fcpu/16 4096μs 16μs

100 Fcpu/32 8192μs 32μs

101 Fcpu/64 16384μs 64μs

110 Fcpu/128 32768μs 128μs

111 Fcpu/256 65536μs 256μs

www.mcu.com.cn V1.3.1

 45 / 70

SC8P115xA series

8.5 TMR0 operation procedure

The operation procedure of TMR0 is:

◆ Set the period of TMR0, TMR0PRD register (TMR0PRD will be latched after TMR0EN is enabled,

so TMR0PRD must be written before TMR0 is enabled);

◆ Set the initial value of the TMR counter (this register is incremented from 0 by default, if the initial

value is assigned and incremented by 1, the value of the counter will be automatically cleared after

overflow, so the initial value needs to be assigned again);

◆ If T0CS=1, the system clock can be configured through IRCF[2:0] to change the period of TMR0;

◆ If PSA=1, the prescaler is used by TMR0, PS2: PS0 is assigned, and the prescaler ratio is selected;

◆ Enable TMR0, TMR0EN=1.

Example: TMR0 timing setting program
 LDIA 03FH

 LD TMR0PRD,A ；set period register

 LDIA 000H

 LD OPTION_REG,A ；Set TMR0 clock=Fcpu/2

 CLR TMR0 ；Initialize TMR0

 SETB OSCCON,TMR0EN

Note:

1. The initial value of TMR0 will not be automatically loaded every time TMR0 overflows, so the user

needs to reload the initial value of TMR0 every time TMR0 overflows; due to the write operation to

TMR0, TMR0 will have a clock that does not increment, and the user to avoid this problem, enter

the correction value yourself.

2. Continue to compare the TMR0 and TMR0PRD values to determine when they match. TMR0 will

increment from 00h until it matches the value in TMR0PRD. When a match occurs, the following

two events occur:

1) TMR0 on the next increment cycle.

2) TMR0 postscaler increments.

www.mcu.com.cn V1.3.1

 46 / 70

SC8P115xA series

9. Genaral PWM

9.1 General PWM overview

General PWM consists of the following functions：

◆ 3 channels of general PWM share a 10-bit period register;

◆ 3 common PWMs share a prescaler;

◆ 3 channels of general PWM each have a 10-bit duty cycle register;

The normal PWM enable of SC8P115xA is controlled by the ENx (x=0-2) bits in PWMCTR0. After

changing the duty cycle register of PWM, the duty cycle will be changed in the next cycle.

TRIS

10Bit duty

cycle register

MUX

PWMCTR2.5~4

presc

aler
Fosc

PWMCTR0.ENx

Buffer

Comparator
10Bit

counter

/1

/2

/4

/8

10Bit period

comparator

Figure 9-1: General PWM Block Diagram

www.mcu.com.cn V1.3.1

 47 / 70

SC8P115xA series

9.2 Registers related to general PWM

There are 3 registers related to general PWM, PWMCTR0-2 (PWM control register), PWMPRD (PWM

period register) and PWMR (PWM duty cycle register). Where PWMR is an indirect access register.

PWM control register 0PWMCTR0(10H)

10H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PWMCTR0 --- --- --- --- --- PWMEN2 PWMEN1 PWMEN0

R/W --- --- --- --- --- R/W R/W R/W

Reset value --- --- --- --- --- 0 0 0

Bit7-Bit5 Not used.

Bit4-Bit1 PWMENx: PWM enable bit (x=0-2);

0: Disable PWMx function;

1: Enable PWMx function.

PWM Control Register 1 PWMCTR1(11H)

11H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PWMCTR1 --- --- PWMR29 PWMR28 PWMR19 PWMR18 PWMR09 PWMR08

R/W --- --- R/W R/W R/W R/W R/W R/W

Reset value --- --- 0 0 0 0 0 0

Bit7-Bit6 Not used.

Bit5-Bit0 PWMRx9-8: The upper 2 bits of the PWMx duty cycle register (bits 9 and 8, x=0-2).

PWM Control Register 2 PWMCTR2(12H)

12H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PWMCTR2 PWMPRD9 PWMPRD8 PWMCK1 PWMCK0 --- PWMS2 PWMS1 PWMS0

R/W R/W R/W R/W R/W --- R/W R/W R/W

Reset value 0 0 0 0 --- 0 0 0

Bit7-Bit6 PWMPRD9-8: The upper 2 bits of the PWM period register (bits 9 and 8, x=0-2);

Bit5-Bit4 PWMCK1-0: PWM clock divider selection bits.

00: FOSC

01: FOSC/2

10: FOSC/4

11: FOSC/8

Bit3 Not used.

Bit2-Bit0 PWMS2-0: PWMR register address select bits.

000: Select the lower 8 bits of the PWM0 channel duty cycle register;

001: Select the lower 8 bits of the PWM1 channel duty cycle register;

010: Select the lower 8 bits of the PWM2 channel duty cycle register;

Others: Not used.

www.mcu.com.cn V1.3.1

 48 / 70

SC8P115xA series

PWM duty cycle register lower 8 bits PWMR (13H)

13H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PWMR

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset value 0 0 0 0 0 0 0 0

PWMR duty cycle register lower 8 bits (3-way shared, indirect access)

Before accessing the PWMR duty cycle register, please set the PWMS2-0 bit in PWMCTR2 to select the

PWM channel to be accessed.

PWM period register lower 8 bits PWMPRD (14H)

14H Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PWMPRD

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Reset value 0 0 0 0 0 0 0 0

www.mcu.com.cn V1.3.1

 49 / 70

SC8P115xA series

9.3 9.3 Period and duty cycle of general PWM

9.3.1 General PWM output period

The general PWM output cycle is determined by the system main frequency (Fosc), the PWM clock

frequency division ratio, and the PWM cycle register. The calculation formula is as follows：

PWM modulation period =（PWMPRD+1）×PWM Frequency division ratio÷FOSC

PWMPRD is a 10Bit register, the upper two bits are Bit7-6 of the PWMCTR2 register, PWMPRD9-8. The

lower 8 bits are the PWMPRD register.

9.3.2 General PWM duty cycle algorithm

The duty cycle of the general PWM output is related to the value of PWMRx. On the whole, its duty cycle

is approximately equal to PWMRx÷(PWMPRD+1). The specific calculation method is that when the PWM

counter is greater than the PWMRx register, the PWM output is 0; when the PWM counter is less than or

equal to the PWMRx register, the PWM output is 1. PWM counter is cleared when equal to period register.

9.4 General PWM Applications

The operation flow required for the application setting of PWM is as follows:

⚫ Set the PWM prescaler value, PWMCK1 and PWMCK0;

⚫ Set the PWM period, PWM_PRD9-8, PWM_PRD[7:0] a total of 10Bit.

⚫ Set PWMS2-0 in PWMCTR2 to select PWM channel;

⚫ Set the PWMR duty cycle: PWMRx9-8 (x=2-0), PWMR[7:0] has a total of 10Bit, because PWMR is

an indirect access register, so the PWM channel to be set must be set first;

⚫ Turn on the corresponding PWM enable bit: PWMCTR0.2-0. After turning on any enable, the PWM

cycle will be latched, so the PWM cycle must be set before any channel of PWM is enabled.

www.mcu.com.cn V1.3.1

 50 / 70

SC8P115xA series

10. Electrical parameters

10.1 DC characteristic

（VDD=5V, TA=25℃, except PB3 port, unless otherwise specified）

Symbol Parameter

Test condition

min typical max unit

VDD Condition

VDD Operating voltage - Fsys=8M 2.0 - 5.5 V

IDD Operating current
5V ---- - 1.5 - mA

3V ---- - 1 - mA

ISTB

Quiescent current (LVR、

WDT Disable)

5V ---- 0.1 1.0 2.0 uA

3V ---- 0.01 0.1 1.0 uA

Quiescent current (LVR、

WDT Enable)

5V ---- 5.0 6.0 10.0 uA

3V ---- 3.0 4.0 6.0 uA

VIL

Low-level input voltage
(pull-up on)

5V ---- - 1.2 - V

Low-level input voltage
(pull-up off)

5V - 1.4 - V

VIH

High-level input voltage
(pull-up on)

5V ---- - 2.0 - V

High-level input voltage
(pull-up off)

5V 2.2 V

VOH High level output voltage - No load 0.9VDD - - V

VOL Low level output voltage - No load - - 0.1VDD V

RPH Pull-up resistor value
5V 0.7VDD - 40 - K

3V 0.7VDD - 60 - K

RPL Pull-down resistor value
5V 0.3VDD - 50 - K

3V 0.3VDD - 85 - K

IOL Output port sink current
5V VOL=0.3VDD - 40 - mA

3V VOL=0.3VDD - 20 - mA

IOH output port pull current
5V VOH=0.7VDD - 10 - mA

3V VOH=0.7VDD - 6 - mA

10.2 LVR Electrical Characteristics

（TA= 25℃，unless otherwise indicated）

Symbol Parameters Test condition min typical max unit

VLVR1 LVR set voltage 1 VDD=1.8~5.5V 1.7 1.8 1.9 V

VLVR2 LVR set voltage 2 VDD=1.98~5.5V 2.7 2.8 2.9 V

www.mcu.com.cn V1.3.1

 51 / 70

SC8P115xA series

10.3 AC Characteristics

（TA=25℃，unless otherwise indicated）

Symbol Parameters
Test condition

min typical max unit
VDD condition

Fsys
working frequency

（RC）
- 2.5V~5.5V - 8 - MHz

TWDT WDT reset time
5V - - 18 - ms

3V - - 30 - ms

FRC
Internal vibration

frequency stability

VDD=4.0~5.5V TA=－20~85℃ -2% 8 +2% MHz

VDD=2.5~5.5V -4% 8 +4% MHz

www.mcu.com.cn V1.3.1

 52 / 70

SC8P115xA series

11. Instructions

11.1 List of instructions

mnemonic operation
instructio
n cycle

symbol

Control

NOP no-op 1 None

STOP enter sleep mode 1 TO,PD

CLRWDT Clear the watchdog counter 1 TO,PD

Data transfer

LD [R],A Transfer ACC content to R 1 NONE

LD A,[R] Transfer R content to ACC 1 Z

TESTZ [R] Transfer data memory contents to data memory 1 Z

LDIA i Send immediate i to ACC 1 NONE

logic operation

CLRA clear ACC 1 Z

SET [R] Set data memory R 1 NONE

CLR [R] Clear data memory R 1 Z

ORA [R] R and contents of ACC do "OR" operation, and the result is stored in ACC 1 Z

ORR [R] R and contents of ACC do "OR" operation, and the result is stored in R 1 Z

ANDA [R] R and contents of ACC do "AND" operation, and the result is stored in ACC 1 Z

ANDR [R] R and contents of ACC do "AND" operation, and the result is stored in R 1 Z

XORA [R] R and contents of ACC do "XOR" operation, and the result is stored in ACC 1 Z

XORR [R] R and contents of ACC do "XOR" operation, and the result is stored in R 1 Z

SWAPA [R]
The high and low byte swap of the contents of the R register, and the result
is stored in the ACC

1 NONE

SWAPR [R]
The high and low byte swap of the contents of the R register, and the result
is stored in the R

1 NONE

COMA [R]
The contents of the R register are inverted, and the result is stored in the
ACC

1 Z

COMR [R] The contents of the R register are inverted, and the result is stored in the R 1 Z

XORIA i
ACC and immediate number i do an "XOR" operation, and the result is
stored in ACC

1 Z

ANDIA i
ACC and immediate number i do an "AND" operation, and the result is
stored in ACC

1 Z

ORIA i
ACC and immediate number i do an "OR" operation, and the result is stored
in ACC

1 Z

Shift operation

RRCA [R]
Rotate data memory right by one bit with carry, and the result is stored in
ACC

1 C

RRCR [R] Rotate data memory right by one bit with carry, and the result is stored in R 1 C

RLCA [R]
Rotate the data memory by one bit to the left with a carry, and store the
result in ACC

1 C

RLCR [R]
Rotate the data memory by one bit to the left with a carry, and store the
result in R

1 C

RLA [R]
Rotate the data memory by one bit to the left without carry, and store the
result in ACC

1 NONE

RLR [R]
Rotate the data memory by one bit to the left without carry, and store the
result in R

1 NONE

RRA [R]
Rotate data memory right by one bit without carry, and the result is stored in
ACC

1 NONE

www.mcu.com.cn V1.3.1

 53 / 70

SC8P115xA series

mnemonic operation

instructio
n cycle

symbol

RRR [R]
Rotate data memory right by one bit without carry, and the result is stored in
R

1 NONE

Increment decrement

INCA [R] Increment data memory R and place result in ACC 1 Z

INCR [R] Increment data memory R and place result in R 1 Z

DECA [R] Decrement data memory R and place result in ACC 1 Z

DECR [R] Decrement data memory R, put result in R 1 Z

Bit manipulation

CLRB [R],b Clear a bit in data memory R 1 NONE

SETB [R],b Set a location in data memory R to a 1 NONE

Math computation

ADDA [R] ACC+[R]→ACC 1 C,DC,Z,OV

ADDR [R] ACC+[R]→R 1 C,DC,Z,OV

ADDCA [R] ACC+[R]+C→ACC 1 Z,C,DC,OV

ADDCR [R] ACC+[R]+C→R 1 Z,C,DC,OV

ADDIA i ACC+i→ACC 1 Z,C,DC,OV

SUBA [R] [R]-ACC→ACC 1 C,DC,Z,OV

SUBR [R] [R]-ACC→R 1 C,DC,Z,OV

SUBCA [R] [R]-ACC-C→ACC 1 Z,C,DC,OV

SUBCR [R] [R]-ACC-C→R 1 Z,C,DC,OV

SUBIA i i-ACC→ACC 1 Z,C,DC,OV

Unconditional transfer

RET Return from subroutine 2 NONE

RET i Return from subroutine and store immediate I in ACC 2 NONE

RETI Return from interrupt 2 NONE

CALL ADD Subroutine call 2 NONE

JP ADD Unconditional jump 2 NONE

Conditional transfer

SZB [R],b If the b bit of the data memory R is "0", skip the next instruction 1 or 2 NONE

SNZB [R],b If the b bit of the data memory R is "1", skip the next instruction 1 or 2 NONE

SZA [R]
Data memory R is sent to ACC, if the content is "0", the next instruction will
be skipped 1 or 2 NONE

SZR [R] The content of data memory R is "0", then skip the next instruction 1 or 2 NONE

SZINCA [R]
Add "1" to data memory R, put the result into ACC, if the result is "0", skip
the next instruction 1 or 2 NONE

SZINCR [R]
Add "1" to data memory R, put the result into R, if the result is "0", skip the
next instruction 1 or 2 NONE

SZDECA [R]
Decrease "1" from data memory R, put the result into ACC, if the result is
"0", skip the next instruction 1 or 2 NONE

SZDECR [R]
Decrease "1" from data memory R, put the result into R, if the result is "0",
skip the next instruction 1 or 2 NONE

www.mcu.com.cn V1.3.1

 54 / 70

SC8P115xA series

11.2 Instruction Description

ADDA [R]

operation: Add R to ACC and put the result into ACC

period: 1

flags
affected:

C，DC，Z，OV

example:

 LDIA 09H ;Assign 09H to ACC

 LD R01,A ; Assign the value of ACC (09H) to the custom register R01

 LDIA 077H ;Assign 77H to ACC

 ADDA R01 ;Execution result: ACC=09H + 77H =80H

ADDR [R]

operation: Add R to ACC and put the result in R

period: 1

flags
affected:

C，DC，Z，OV

example:

 LDIA 09H ;Assign 09H to ACC

 LD R01,A ; Assign the value of ACC (09H) to the custom register R01

 LDIA 077H ;Assign 77H to ACC

 ADDR R01 ;Execution result: R01=09H + 77H =80H

ADDCA [R]

operation: Add R plus ACC plus C bit, the result is put into ACC

period: 1

flags
affected:

C，DC，Z，OV

example:

 LDIA 09H ;Assign 09H to ACC

 LD R01,A ; Assign the value of ACC (09H) to the custom register R01

 LDIA 077H ;Assign 77H to ACC

 ADDCA R01 ;Execution result: ACC= 09H + 77H + C=80H (C=0)
 ACC= 09H + 77H + C=81H (C=1)

ADDCR [R]

operation: Add R plus ACC plus C bit, the result is put into R

period: 1

flags
affected:

C，DC，Z，OV

example:

 LDIA 09H ;Assign 09H to ACC

 LD R01,A ; Assign the value of ACC (09H) to the custom register R01

 LDIA 077H ;Assign 77H to ACC

 ADDCR R01 ;Execution result: R01 = 09H + 77H + C=80H (C=0)
 R01 = 09H + 77H + C=81H (C=1)

www.mcu.com.cn V1.3.1

 55 / 70

SC8P115xA series

ADDIA i

operation: Add immediate i to ACC, and put the result into ACC

period: 1

flags
affected:

C，DC，Z，OV

example:

 LDIA 09H ;Assign 09H to ACC

 ADDIA 077H ;Execution result: ACC = ACC(09H) + i(77H)=80H

ANDA [R]

operation: Register R and ACC perform logical AND operation, and the result is placed in ACC

period: 1

flags

affected:

Z

example:

 LDIA 0FH ;Assign 0FH to ACC

 LD R01,A ;Assign the value of ACC (0FH) to register R01

 LDIA 77H ;Assign 77H to ACC

 ANDA R01 ;Execution result: ACC=(0FH and 77H)=07H

ANDR [R]

operation: Register R and ACC perform logical AND operation, and the result is placed in R

period: 1

flags
affected:

Z

example:

 LDIA 0FH ;Assign 0FH to ACC

 LD R01,A ;Assign the value of ACC (0FH) to register R01

 LDIA 77H ;Assign 77H to ACC

 ANDR R01 ;Execution result: R01=(0FH and 77H)=07H

ANDIA i

operation: Perform a logical AND operation on the immediate i and ACC, and put the result into ACC

period: 1

flags
affected:

Z

example:

 LDIA 0FH ;Assign 0FH to ACC

 ANDIA 77H ;Execution result: ACC =(0FH and 77H)=07H

CALL add

operation: call subroutine

period: 2

flags
affected:

No

example:

 CALL LOOP ; Call the subroutine address whose name is defined as "LOOP"

www.mcu.com.cn V1.3.1

 56 / 70

SC8P115xA series

CLRA

operation: ACC is cleared

period: 1

flags
affected:

Z

example:

 CLRA ; Execution result: ACC=0

CLR [R]

operation: Register R is cleared

period: 1

flags
affected:

Z

example:

 CLR R01 ;Execution result：R01=0

CLRB [R],b

operation: Bit b of register R is cleared

period: 1

flags
affected:

No

example:

 CLRB R01,3 ;Execution result：Bit 3 of R01 is zero

CLRWDT

operation: Clear the watchdog counter

period: 1

flags
affected:

TO，PD

example:

 CLRWDT ; Watchdog counter clear

COMA [R]

operation: Invert register R and put the result into ACC

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 LD R01,A ;Assign the value of ACC (0AH) to register R01

 COMA R01 ;Execution result: ACC=0F5H

www.mcu.com.cn V1.3.1

 57 / 70

SC8P115xA series

COMR [R]

operation: Invert the register R and put the result into R

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 LD R01,A ;Assign the value of ACC (0AH) to register R01

 COMR R01 ;Execution result: R01=0F5H

DECA [R]

operation: Register R is decremented by 1, and the result is placed in ACC

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 LD R01,A ;Assign the value of ACC (0AH) to register R01

 DECA R01 ;Execution result: ACC=(0AH-1)=09H

DECR [R]

operation: Register R is decremented by 1, and the result is placed in R

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 LD R01,A ;Assign the value of ACC (0AH) to register R01

 DECR R01 ;Execution result: R01=(0AH-1)=09H

INCA [R]

operation: Register R is incremented by 1, and the result is placed in ACC

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 LD R01,A ; Assign the value of ACC (0AH) to register R01

 INCA R01 ;Execution result: ACC=(0AH+1)=0BH

www.mcu.com.cn V1.3.1

 58 / 70

SC8P115xA series

INCR [R]

operation: Register R is incremented by 1, and the result is placed in R

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 LD R01,A ;Assign the value of ACC (0AH) to register R01

 INCR R01 ;Execution result: R01=(0AH+1)=0BH

JP add

operation: Jump to add address

period: 2

flags
affected:

No

example:

 JP LOOP ; Jump to the subroutine address whose name is defined as "LOOP"

LD A,[R]

operation: assign the value of R to ACC

period: 1

flags
affected:

Z

example:

 LD A,R01 ;Assign the value of register R0 to ACC

 LD R02,A
;Assign the value of ACC to register R02 to realize the movement of

data from R01→R02

LD [R],A

operation: assign the value of ACC to R

period: 1

flags
affected:

No

example:

 LDIA 09H ;Assign 09H to ACC

 LD R01,A ;Execution result: R01=09H

LDIA i

operation: Immediate number i is assigned to ACC

period: 1

flags
affected:

No

example:

 LDIA 0AH ; ACC assigns 0AH

www.mcu.com.cn V1.3.1

 59 / 70

SC8P115xA series

NOP

operation: No operation

period: 1

flags
affected:

No

example:

 NOP

 NOP

ORIA i

operation: The immediate value is logically ORed with ACC, and the result is assigned to ACC

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 ORIA 030H ;Execution result: ACC =(0AH or 30H)=3AH

ORA [R]

operation: Register R and ACC perform logical OR operation, and the result is placed in ACC

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;Assign 0AH to ACC

 LD R01,A ;Assign ACC(0AH) to register R01

 LDIA 30H ;Assign 30H to ACC

 ORA R01 ;Execution result：ACC=(0AH or 30H)=3AH

ORR [R]

operation: The register R is logically ORed with ACC, and the result is placed in R

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;Assign 0AH to ACC

 LD R01,A ;Assign ACC(0AH) to register R01

 LDIA 30H ;Assign 30H to ACC

 ORR R01 ;Execution result：R01=(0AH or 30H)=3AH

www.mcu.com.cn V1.3.1

 60 / 70

SC8P115xA series

RET

operation: return from subroutine

period: 2

flags
affected:

No

example:

 CALL LOOP ;Call subroutine LOOP

 NOP ;The statement will be executed after the RET instruction returns

 … ; other programs

LOOP:

 … ; subroutine

 RET ; subroutine return

RET i

operation: Return from subroutine with parameters, the parameters are put into ACC

period: 2

flags
affected:

No

example:

 CALL LOOP ;Call subroutine LOOP

 NOP ;The statement will be executed after the RET instruction returns

 … ;Other programs

LOOP:

 … ;Subroutine

 RET 35H ;Subroutine return, ACC=35H

RETI

operation: return from interrupt

period: 2

flags
affected:

No

example:

INT_START ;Interrupt program entry

 … ;Interrupt handler

 RETI ;Interrupt return

RLCA [R]

operation: Register R and C are rotated to the left by one bit, and the result is placed in ACC

period: 1

flags
affected:

C

example:

 LDIA 03H ;ACC assigns 03H

 LD R01,A ;The ACC value is assigned to R01, R01=03H

 RLCA R01 ;Execution result: ACC=06H(C=0);
 ACC=07H(C=1)
 C=0

www.mcu.com.cn V1.3.1

 61 / 70

SC8P115xA series

RLCR [R]

operation: Rotate register R and C to the left by one bit, and put the result into R

period: 1

flags
affected:

C

example:

 LDIA 03H ;ACC assigns 03H

 LD R01,A ;The ACC value is assigned to R01, R01=03H

 RLCR R01 ;Execution result：R01=06H(C=0);

 R01=07H(C=1);
 C=0

RLA [R]

operation: Register R without C is rotated left by one bit, and the result is placed in ACC

period: 1

flags
affected:

No

example:

 LDIA 03H ; ACC assignment 03H

 LD R01,A ; ACC value is assigned to R01, R01=03H

 RLA R01 ;Execution result：ACC=06H

RLR [R]

operation: Register R without C is rotated left by one bit, and the result is placed in R

period: 1

flags
affected:

No

example:

 LDIA 03H ;ACC assigns 03H

 LD R01,A ;The ACC value is assigned to R01, R01=03H

 RLR R01 ;Execution result：R01=06H

RRCA [R]

operation: Register R and C rotate right by one bit, and the result is placed in ACC

period: 1

flags
affected:

C

example:

 LDIA 03H ;ACC assigns 03H

 LD R01,A ;The ACC value is assigned to R01, R01=03H

 RRCA R01 ;Execution result：ACC=01H(C=0);

 ACC=081H(C=1);
 C=1

www.mcu.com.cn V1.3.1

 62 / 70

SC8P115xA series

RRCR [R]

operation: Register R and C rotate right by one bit, and the result is placed in R

period: 1

flags
affected:

C

example:

 LDIA 03H ;ACC assigns 03H

 LD R01,A ;The ACC value is assigned to R01, R01=03H

 RRCR R01 ;Execution result：R01=01H(C=0);

 R01=81H(C=1);
 C=1

RRA [R]

operation: Register R without C is rotated right by one bit, and the result is placed in ACC

period: 1

flags
affected:

No

example:

 LDIA 03H ;ACC assigns 03H

 LD R01,A ;The ACC value is assigned to R01, R01=03H

 RRA R01 ;Execution result：ACC=81H

RRR [R]

operation: Register R without C rotates right by one bit, the result is placed in R

period: 1

flags
affected:

No

example:

 LDIA 03H ;ACC assigns 03H

 LD R01,A ;The ACC value is assigned to R01, R01=03H

 RRR R01 ;Execution result：R01=81H

SET [R]

operation: All bits of register R are set to 1

period: 1

flags
affected:

No

example:

 SET R01 ;Execution result：R01=0FFH

SETB [R],b

operation: Bit b of register R is set to 1

period: 1

flags
affected:

No

example:

 CLR R01 ;R01=0

 SETB R01,3 ;Execution result：R01=08H

www.mcu.com.cn V1.3.1

 63 / 70

SC8P115xA series

STOP

operation: go to sleep

period: 1

flags
affected:

TO，PD

example:

 STOP
; The chip enters the power saving mode, the CPU and oscillator stop
working, and the IO port remains in the original state.

SUBIA i

operation: Subtract ACC from immediate i, and put the result into ACC

period: 1

flags
affected:

C,DC,Z,OV

example:

 LDIA 077H ; ACC assigns 77H

 SUBIA 80H ;Execution result：ACC=80H-77H=09H

SUBA [R]

operation: Register R minus ACC, the result is placed in ACC

period: 1

flags
affected:

C,DC,Z,OV

example:

 LDIA 080H ;ACC assigns 80H

 LD R01,A ;The value of ACC is assigned to R01, R01=80H

 LDIA 77H ;ACC assigns 77H

 SUBA R01 ;Execution result：ACC=80H-77H=09H

SUBR [R]

operation: Register R minus ACC, the result is placed in R

period: 1

flags
affected:

C,DC,Z,OV

example:

 LDIA 080H ;ACC assigns 80H

 LD R01,A ;The value of ACC is assigned to R01, R01=80H

 LDIA 77H ;ACC assigns 77H

 SUBR R01 ;Execution result：R01=80H-77H=09H

www.mcu.com.cn V1.3.1

 64 / 70

SC8P115xA series

SUBCA [R]

operation: Register R minus ACC minus C, the result is put into ACC

period: 1

flags
affected:

C,DC,Z,OV

example:

 LDIA 080H ;ACC assigns 80H

 LD R01,A ;The value of ACC is assigned to R01, R01=80H

 LDIA 77H ;ACC assigns 77H

 SUBCA R01 ;Execution result：ACC=80H-77H-C=09H(C=0);

 ACC=80H-77H-C=08H(C=1);

SUBCR [R]

operation: Register R minus ACC minus C, the result is put into R

period: 1

flags
affected:

C,DC,Z,OV

example:

 LDIA 080H ;ACC assigns 80H

 LD R01,A ;The value of ACC is assigned to R01, R01=80H

 LDIA 77H ;ACC assigns 77H

 SUBCR R01 ;Execution result：R01=80H-77H-C=09H(C=0)

 R01=80H-77H-C=08H(C=1)

SWAPA [R]

operation: The high and low byte of register R are swapped, and the result is placed in ACC

period: 1

flags
affected:

No

example:

 LDIA 035H ;ACC assigns 35H

 LD R01,A ;The value of ACC is assigned to R01, R01=35H

 SWAPA R01 ;Execution result：ACC=53H

SWAPR [R]

operation: The high and low byte of register R are swapped, and the result is placed in R

period: 1

flags
affected:

No

example:

 LDIA 035H ;ACC assigns 35H

 LD R01,A ;The value of ACC is assigned to R01, R01=35H

 SWAPR R01 ;Execution result：R01=53H

www.mcu.com.cn V1.3.1

 65 / 70

SC8P115xA series

SZB [R],b

operation: Judging the bth bit of register R, it is a 0 jump, otherwise it is executed sequentially

period: 1 or 2

flags
affected:

No

example:

 SZB R01,3 ; Judge the 3rd bit of register R01

 JP LOOP ;The third bit of R01 is 1 to execute this statement and jump to LOOP

 JP LOOP1
;The third bit of R01 is 0 time jump, execute this statement, jump to
LOOP1

SNZB [R],b

operation: Judging the bth bit of register R, it is a jump between 1, otherwise it is executed sequentially

period: 1 or 2

flags
affected:

No

example:

 SNZB R01,3 ; Judge the 3rd bit of register R01

 JP LOOP ;The third bit of R01 is 0 to execute this statement and jump to LOOP

 JP LOOP1
;The third bit of R01 is 1 time jump, execute this statement, jump to
LOOP1

SZA [R]

operation: Assign the value of register R to ACC, skip if R is 0, otherwise execute sequentially

period: 1 or 2

flags
affected:

No

example:

 SZA R01 ;R01→ACC

 JP LOOP ;Execute this statement when R01 is not 0, jump to LOOP

 JP LOOP1 ;R01 is 0 time jump, execute this statement, jump to LOOP1

SZR [R]

operation: Assign the value of register R to R, skip if R is 0, otherwise execute sequentially

period: 1 or 2

flags
affected:

No

example:

 SZR R01 ;R01→R01

 JP LOOP ;Execute this statement when R01 is not 0, jump to LOOP

 JP LOOP1 ;R01 is 0 time jump to execute this statement, jump to LOOP1

www.mcu.com.cn V1.3.1

 66 / 70

SC8P115xA series

SZINCA [R]

operation:
Add 1 to register R and put the result into ACC. If the result is 0, skip the next statement, otherwise execute
sequentially

period: 1 or 2

flags
affected:

No

example:

 SZINCA R01 ;R01+1→ACC

 JP LOOP ;Execute this statement when ACC is not 0, jump to LOOP

 JP LOOP1 ;Execute this statement when ACC is 0, jump to LOOP1

SZINCR [R]

operation:
Add 1 to register R, and put the result into R. If the result is 0, skip the next statement, otherwise execute
sequentially

period: 1 or 2

flags
affected:

No

example:

 SZINCR R01 ;R01+1→R01

 JP LOOP ; Execute this statement when R01 is not 0, jump to LOOP

 JP LOOP1 ; Execute this statement when R01 is 0, jump to LOOP1

SZDECA [R]

operation:
Decrement register R by 1, and put the result into ACC. If the result is 0, skip the next statement, otherwise
execute sequentially

period: 1 or 2

flags
affected:

No

example:

 SZDECA R01 ;R01-1→ACC

 JP LOOP ;Execute this statement when ACC is not 0, jump to LOOP

 JP LOOP1 ;Execute this statement when ACC is 0, jump to LOOP1

SZDECR [R]

operation:
Decrement register R by 1, put the result into R, if the result is 0, skip the next statement, otherwise execute
sequentially

period: 1 or 2

flags
affected:

No

example:

 SZDECR R01 ;R01-1→R01

 JP LOOP ; Execute this statement when R01 is not 0, jump to LOOP

 JP LOOP1 ; Execute this statement when R01 is 0, jump to LOOP1

www.mcu.com.cn V1.3.1

 67 / 70

SC8P115xA series

TESTZ [R]

operation: Assign the value of R to R to affect the Z flag

period: 1

flags
affected:

Z

example:

 TESTZ R0 ; Assign the value of register R0 to R0 to affect the Z flag bit

 SZB STATUS,Z ; Judging the Z flag bit, it is a jump between 0

 JP Add1 ; Jump to address Add1 when register R0 is 0

 JP Add2 ; Jump to address Add1 when register R0 is not 0

XORIA i

operation: The immediate value is XORed with ACC, and the result is put into ACC

period: 1

flags
affected:

Z

example:

 LDIA 0AH ; ACC assigns 0AH

 XORIA 0FH ;Execution result：ACC=05H

XORA [R]

operation: Register R and ACC perform logical XOR operation, and the result is placed in ACC

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 LD R01,A ;The ACC value is assigned to R01, R01=0AH

 LDIA 0FH ;ACC assigns 0FH

 XORA R01 ;Execution result：ACC=05H

XORR [R]

operation: Register R and ACC perform a logical XOR operation, and the result is placed in R

period: 1

flags
affected:

Z

example:

 LDIA 0AH ;ACC assigns 0AH

 LD R01,A ;The ACC value is assigned to R01, R01=0AH

 LDIA 0FH ;ACC assigns 0FH

 XORR R01 ;Execution result：R01=05H

www.mcu.com.cn V1.3.1

 68 / 70

SC8P115xA series

12. Packaging

12.1 SOT23-6

Symbol
Millimeter

Min Nom Max

A - - 1.25

A1 0.04 - 0.10

A2 1.00 1.10 1.20

A3 0.55 0.65 0.75

b 0.38 - 0.48

b1 0.37 0.40 0.43

c 0.11 - 0.21

c1 0.10 0.13 0.16

D 2.72 2.92 3.12

E 2.60 2.80 3.00

E1 1.40 1.60 1.80

e 0.95BSC

e1 1.9BSC

L 0.30 - 0.60

θ 0 - 8°

www.mcu.com.cn V1.3.1

 69 / 70

SC8P115xA series

12.2 SOP8

Symbol
Millimeter

Min Nom Max

A - - 1.75

A1 0.10 - 0.225

A2 1.30 1.40 1.50

A3 0.60 0.65 0.70

b 0.39 - 0.47

b1 0.38 0.41 0.44

c 0.20 - 0.24

c1 0.19 0.20 0.21

D 4.80 4.90 5.00

E 5.80 6.00 6.20

E1 3.80 3.90 4.00

e 1.27BSC

h 0.25 - 0.50

L 0.5 - 0.80

L1 1.05REF

θ 0 - 8°

www.mcu.com.cn V1.3.1

 70 / 70

SC8P115xA series

13. Version revision instructions

Version Time Content modified

V1.0 July 2018 initial version

V1.1 July 2019 Feature version upgrade

V1.2 May 2020 Change to new format

V1.3 Jan 2022 Correct packaging information

V1.3.1 Mar
1) Add DAT2 and PB0 lines to the figure in chapter 1.5
2) Correct the Bit7 name in 3.3 Oscillator Control Register

	Precautions for use
	1. Product Overview
	1.1 Functional characteristics and selection table
	1.2 System structure block diagram
	1.3 Pin assignment
	1.4 System Configuration Register
	1.5 In-Circuit Serial Programming

	2. Central processing unit（CPU）
	2.1 Memory
	2.1.1 Program memory
	2.1.1.1 Reset vector (0000H)
	2.1.1.2 Interrupt vector
	2.1.1.3 Jump table

	2.1.2 Data memory
	2.1.2.1 General purpose data storage
	2.1.2.2 System dedicated data memory

	2.2 Addressing mode
	2.2.1 Direct addressing
	2.2.2 Immediate addressing mode
	2.2.3 Indirect addressing

	2.3 Stack
	2.4 Working Register（ACC）
	2.4.1 General
	2.4.2 ACC application

	2.5 Program Status Register（STATUS）
	2.6 Prescaler（OPTION_REG）
	2.7 Program Counter（PC）
	2.8 Watchdog counter（WDT）
	2.8.1 WDT cycle

	3. System clock
	3.1 Overview
	3.2 System oscillator
	3.2.1 Internal RC oscillation

	3.3 Oscillator Control Register
	3.4 Start-up time

	4. Reset
	4.1 Power on reset
	4.2 Power down reset
	4.2.1 Improvement method of power-down reset
	4.2.2 Watchdog reset

	5. System working mode
	5.1 Sleep mode
	5.1.1 Sleep mode application example
	5.1.2 Wake-up from sleep mode
	5.1.3 Sleep mode wake-up time

	6. I/O port
	6.1 I/O port mode and pull-up and pull-down resistors
	6.1.1 PORTB port

	6.2 The use of I/O ports
	6.2.1 Write I/O port
	6.2.2 Read I/O port

	6.3 I/O port usage precautions

	7. Interrupt
	7.1 Interrupt overview
	7.2 Interrupt Control Register
	7.3 Protection method of interrupt site
	7.3.1 Considerations for External Interrupts

	7.4 Interrupt priority and interrupt nesting

	8. Timer TMR0
	8.1 TMR0 overview
	8.2 TMR0 related registers
	8.3 Using an external clock as the clock source for TMR0
	8.4 Application of TMR0 as Timer
	8.4.1 Basic time constant of TMR0

	8.5 TMR0 operation procedure

	9. Genaral PWM
	9.1 General PWM overview
	9.2 Registers related to general PWM
	9.3 9.3 Period and duty cycle of general PWM
	9.3.1 General PWM output period
	9.3.2 General PWM duty cycle algorithm

	9.4 General PWM Applications

	10. Electrical parameters
	10.1 DC characteristic
	10.2 LVR Electrical Characteristics
	10.3 AC Characteristics

	11. Instructions
	11.1 List of instructions
	11.2 Instruction Description

	12. Packaging
	12.1 SOT23-6
	12.2 SOP8

	13. Version revision instructions

